
Pathspace Representation of Affine Processes

Pathspace Representation of Affine Processes

Nicoletta Gabrielli

ETH Zürich
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Introduction

Option Pricing
The problem:
given

- (Xxt )t∈[0,T ] stock process

- H payoff function, possibly depending on the whole path up
to time T

find Ex
�
H(Xt , t ∈ [0, T ])

�
.

Example

H : D(R≥0;D) → R≥0
X
x �→ H(Xx) := max (Xx

T
−K, 0)

X
x �→ H(Xx) := max

��
T

0

X
x

t dt −K, 0
�
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Approximation of trajectories by MC methods

step 1 Fix a uniform partition in [0, T ]
{t0 = 0, . . . , tk = kh, . . . , tN = T}, h = T

N
.

step 2 Find a piecewise constant approximating process
( �Xtk )k=0,...,N such that
- �Xt0 = x,
- �X is a weak ν−order approximation of Xx .

Definition

For every f ∈ C∞ with compact support there exists a K > 0
such that ���Ex

�
f (XT )

�
− Ex

�
f ( �XtN )

���� ≤ Khν .
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Find the approximating sequence

Original process: Xx a time-homogeneous Markov process with
state space D and associated semigroup

Pt f (x) := Ex
�
f (Xt)

�
, f ∈M,

M space of measurable functions where Ex
�
f (Xt)

�
is well

defined.
Approximated process: �Xx with transition semigroup Qh which is
bounded and

lim
N→∞

(Qh)
N
f = PT f .
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If �X is a good approximation of X we need
1. (Qh)

k to be close to Ptk ,

2. short time asymptotic

|QhPs f − PhPs f | ≤ Kρ(x)hν+1, for all f ∈M, h, s ∈ [0, T ],

3. PtM ⊆M to do the iteration.

From single step to multi-step

(Qh)
N − PT f =

N−1�

k=1

(Qh)
N−k(Qh − Ph)Ptk f .
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Follow the lines of ODE approximation

If f ∈ C2 with bounded derivative, from Dynkin formula

Ex
�
f (Xh)

�
= f (x) + h

�
1

0

Ex
�
Af (Xsh)

�
ds.

Iterating...

Ex
�
f (Xh)

�
=f (x) +

ν�

k=1

h
k

k!
Ak f (x)

+
h
ν+1

ν!

�
1

0

(1− s)ν Ex
�
Aν+1f (Xsh)

�
ds

How far can we go with the space of test functionM?
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The choice of test functions

TakeM = C∞pol (see [Jacod et al., 2005], [Alfonsi, 2010])

Definition (The function space Ckpol)

A function f ∈ Ckpol if
� f ∈ Ck

� for all α multi-index with |α| ≤ k , there exist constants Cα
and eα such that

|∂αf (x)| ≤ Cα(1 + |x |eα), for all x ∈ D.
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Theorem (Theorem 1.9 in [Alfonsi, 2010])

Under the assumptions

1. (Uniform bounded moments)

2. (ν− order asymptotic of the local error)
3. (Regularity Kolmogorov PIDE) f is a function such that

u(t, x) = Ex
�
f (XT−t)

�
is the solution of the PIDE

∂tu(t, x) +Au(t, x) = 0 with u(t, x) ∈ Ckpol

Then �Xx is a weak ν−order scheme for Xx .
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Two types of error

Figure : Geometrical interpretation of the local truncation error and the
true error. The picture in taken from [Quarteroni et al., 2010]
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Problem 1

Find Qh such that

lim
N→∞

(Q t

N

)Nf = Pt f .

High dimensional state space

�→ High order numerical schemes

Domain constrains

�→ Geometry preserving schemes
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Problem 2

Is the stability condition satisfied?

Feynman-Kac representation

If u is a classical solution of

∂tu(t, x) +Au(t, x) = 0

and its derivatives are bounded by a polynomial function uniformly
in t, then it has the probabilistic representation

u(t, x) = Ex
�
f (XT−t)

�
.

�→ Is u smooth enough?
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Regularity of the solution of the Kolmogorov PIDE

� Regularity of the Kolmogorov equation in time is easier to
handle(Dynkin formula) than regularity in space.

� Idea: Switch time and space, what do you get?

Example: One dimensional case in R≥0

(Xxt )t≥0
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Regularity of the solution of the Kolmogorov PIDE

� Regularity of the Kolmogorov equation in time is easier to
handle(Dynkin formula) than regularity in space.

� Idea: Switch time and space , what do you get?

Example: One dimensional case in R≥0

(Xx t)x≥0
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Affine processes

From Affine Processes to Lévy Processes and back
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Affine processes

Affine processes on the canonical state space
An affine processes on the canonical state space D = Rm≥0 × Rn
is a time homogeneous Markov process

X = (Ω, (Ft)t≥0, (pt)t≥0, (Xt)t≥0, (Px)x∈D∆)
satisfying the following properties:

� (stochastic continuity) for every t ≥ 0 and x ∈ D,
lims→t ps(x, ·) = pt(x, ·) weakly,

� (affine property) there exist functions φ : R≥0 × U → C and
Ψ : R≥0 × U → Cd such that

Ex
�
e
�u,Xt�

�
=

�

D

e
�u,ξ�
pt(x, dξ) = e

φ(t,u)+�Ψ(t,u),x�

for all x ∈ D and (t, u) ∈ R≥0 × U , with

U =
�
u ∈ Cd | e�u,x� is a bounded function on D

�
. (1)
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From affine processes to linear processes

Let AP (D) be the space of affine processes with state space D.
Define the map

� : AP (Rm≥0 × Rn) → AP (Rm+1≥0 × R
n)

X �→ X
�

Input: X with Ex
�
e
�u,Xt�

�
= eφ(t,u)+�x,Ψ(t,u)�

Output: X � with E(1,x)
�
e�u,X �

t �
�
= e�(1,x),Ψ

�
(t,u)� where

Ψ �(t, u0, u1, . . . , ud) :=

�
φ(t, u1, . . . , ud) + u0
Ψ(t, u1, . . . , ud)

�
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Affine processes

Linear structure

There exists a function Ψ : R≥0 × U → Cd such that

Ex
�
e
�u,Xt�

�
=

�

D

e
�u,ξ�
pt(x, dξ) = e

�Ψ(t,u),x�
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Affine processes

Generalized Riccati equations

On the set Q = R≥0 × U , the function Ψ satisfies the following
system of generalized Riccati equations:

Generalized Riccati equations

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u

where for each k = 1, . . . , d the function Rk has the following
Lévy-Khintchine form

Rk(u) = �βk , u�+
1

2
�u,αku� − γk

+

�

D\{0}

�
e
�u,ξ� − 1−

�
πJ∪{k}u,πJ∪{k}h(ξ)

��
Mk(dξ).

here
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Infinite divisibility in D
Let C the convex cone of continuous function η : U → C+ of type

η(u) = �b, u�+
1

2
�πJu,σπJu�

+

�

D\{0}

�
e
�u,ξ� − 1− �πJu,πJh(ξ)�

�
ν(dξ). (*)

Definition

A distribution λ on D∆ is infinitely divisible if and only if its
Laplace transform takes the form eη(u)−c, where η has the form
(*) and c = logλ(D).

pt(x, ·) is infinitely divisible in D!
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From Affine Processes to Lévy Processes and back

From affine processes to Lévy processes

Let (D(R≥0;D∆), (Ft)t≥0, (pt)t≥0, (Xt)t≥0, (Px)x∈D∆) be a linear
process on the canonical state space D = Rm≥0 × Rn.

Proposition

For each fixed t > 0 and x ∈ D \ {0,∆}, there exists process
(Ltsx)s∈[0,1] such that:

1. Lt
0
= 0,

2. for every 0 ≤ s1 ≤ s2 ≤ 1, the increment Lts2x − L
t
s1x
is

independent of the family (Ltsx)s∈[0,s1] and it distributed as

X
(s2−s1)x
t

.

Moreover for any fixed t ≥ 0, and x ∈ D there exists a unique
modification �Lt of Lt which is a Lévy process with càdlàg paths.
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From Affine Processes to Lévy Processes and back

The proof

Apply Kolmogorov’s existence Theorem with the convolution
semigroup (pt(sx, ·))s≥0.

Chapman-Kolmogorov’s equations → Semigroup property in
time

ps+t(x, ·) = ps · pt(x, ·) :=
�
pt(x, dy)ps(y , ·),

Linearity → Convolution property in space
pt(x + y , ·) = pt(x, ·) ∗ pt(y , ·).
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From Affine Processes to Lévy Processes and back

Let t run

Remark: Here t appears here as a parameter of (Ltsx)s∈[0,1].

Idea: Let t evolve and consider the above construction on the
path space.

Result: Construct a path valued process (L·sx)s∈[0,1] which starts
in zero and it reaches (Xxt )t≥0 at time 1. here
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From Affine Processes to Lévy Processes and back

Make things rigorous

Theorem

There exists a process (Lsx)s≥0 taking values in D(R≥0;D∆) such
that

1. it has stationary and independent increments,

2. it is stochastically continuous,

3. it holds

Ex
�
e
�u,Xt�

�
= e�x,Ψ(t,u)� = E

�
e
�u,evt(Lsx )�

�
��
s=1

Proof: Apply Kolmogorov’s existence Theorem with the
convolution semigroup ℘s(x, ·) := Psx , s ≥ 0.
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Path approximation by Time-Space transformations

A guiding principle
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Path approximation by Time-Space transformations

Lévy-Kintchine decomposition of an affine process

step 1 Solve Ψ(t, u) = u +
�
t

0
R(Ψ(s, u))ds, u ∈ U .

step 2 Do Lévy-Khintchine decomposition of Ψ(t, u).
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Path approximation by Time-Space transformations

Approximation Riccati equations

1. Fix N > 0, T > 0 and a partition
{t0 = 0, t1 = h, . . . , tN = T} with h = T

N
.

2. Let yn be the approximation of Ψ(tn, u).

Example: Forward Euler’s method

For small h,

Ex
�
e
�u,Xh�

�
= e�x,u�+h�x,R(u)�, u ∈ U .

X
x
t is infinitely divisible in D = Rm≥0 × Rn but �x,R(u)� has
the Lévy-Khintchine representation in Rd ! here

� Seek methods that preserve positivity of the semiflow.
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Path approximation by Time-Space transformations

Example 1: Feller diffusion� homographic ray

E
�
e
uLtx

�
= exp

�
x
u

1− ut
2

�
, Re(u) <

2

t
,

Affine process on R≥0 with functional characteristic R(u) =
1

2
u
2
.

Exact approximation

�Xx0 = x,

�Xxtk+1 = (Lhsx)s=1,x= �Xx
t
k

, k ≥ 0

where Lt·x is a subordinator with
ν(t, x, dξ) := 4x

t2
e
− 2ξ
t dξ.
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(Xx
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Path approximation by Time-Space transformations

Example 2: Neveu Branching� stable ray

E
�
e
uJ tx

�
= exp

�
−x(−u)e−t

�

Affine process on R≥0 with functional characteristic
R(u) = −u log(−u).

Exact approximation

�Xx0 = x

�Xxtk+1 = (J hsx)s=1,x= �Xx
t
k

, k ≥ 0.

where J t·x is a subordinator with
ν(t, x, dξ) := xe

−t

Γ(1−e−t)ξ
−1−e−t

dξ.
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Path approximation by Time-Space transformations

CIR with jumps

The Model:

dZ
z

t = cZ
z

t dt +
�
Zz
t
dWt +

�

|ξ|>1
ξN(ds, dξ)

+

�

|ξ|≤1
ξ(N(dt, dξ)−

dξ

ξ2
Z
z

t dt)

R
C+J(u) = cu + 1

2
u
2 +

�∞
0

�
e
uξ − 1− uξ |ξ|≤1

�
dξ

ξ2

Idea: Split the vector field

R
C+J(u) = R

C(u) + R
J(u)� �

Feller Diffusion Neveu CSBP
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Path approximation by Time-Space transformations

Geometry preserving schemes

1. Let �Ψ(h, u) := ΨJ(h,ΨC(h, u)).
2. Define

y0(u) = u

yn+1(u) = �Ψ(h, yn(u)) n = 0, . . . , N − 1.

3. limn→∞ yN(u) =: Ψ
C+J(t, u) with

ΨC+J(t, u) = u +

�
t

0

R
C+J(ΨC+J(s, u))ds.

Remark: PT f = limN→∞(Qhf )
N
, Qh := P

C

h
P
J

h
. Other

examples: main .
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Regularity solution Kolmogorov PIDE

Set the notation

Consider

u(t, x) = Ex
�
f (XT−t)

�
not.!
= E

�
f (L(T−t,x)s )

�
���
s=1

.

Introduce

v
(t,x)(s, y) = Ey

�
f (L(T−t,x)

(1−s) )
�

� �� �
it evolves in time s

= E
�
f (L(T−t,x)

(1−s) + y)
�
.

Remark: Regularity in x for u(t, x) can be obtained by regularity
in s of v (t,x)(s, y).
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Regularity solution Kolmogorov PIDE

Change the perspective

General case: (L(t,x)s )s≥0 is a Lévy process with infinitesimal
generator

L(t,x)f (y) =
1

2
Tr(σ(t, x)�f (y)) + �b(t, x),∇f (y)�

+

�
(f (y + ξ)− f (y)− �ξ,∇f (y)�) ν(t, x, dξ).

Processes on Rm≥0: (L
(t,x)

s )s≥0 is a subordinator.

Feller diffusion: (L(t,x)s )s≥0 is a compound Poisson process with
Lévy measure

ν(t, x, dξ) =
x

(2t)2
exp

�
−
ξ

2t

�
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Regularity solution Kolmogorov PIDE

Regularity of the solution of the Kolmogorov PIDE

Advantages

� If L(t,x)C∞pol ⊆ C∞pol all the derivatives with respect of s exists.
� In the diffusive case regularity of (s, y) �→ v (t,x)(s, y) has
been proved already in [Talay and Tubaro, 1990].

� The Lévy case has been studied in [Jacod et al., 2005] and
[Protter and Talay, 1997].
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Regularity solution Kolmogorov PIDE

A one dimensional example: The Feller diffusion

� In [Alfonsi, 2005] regularity is obtained by using explicit
expression of the density
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Regularity solution Kolmogorov PIDE

Regularity for Kolmgorov’s equation driven by operators
of Lévy type

Idea Use results in [Jacod et al., 2005] for Lévy driven SDE.

v
(t,x)(s, y) := Ey

�
f (L(T−t,x)

(1−s) )
�

Sufficient conditions (Corollary 5.2. in [Protter and Talay, 1997])

� f ∈ Ckpol
�

�
|ξ|≥1 |ξ|

k
ν(t, x, dξ) <∞

Then there exists a constant(depending on t and f ) such that for
all α multi-index with |α| ≤ k there exists M ∈ N such that

|∂α
(s,y)
v
(t,x)(s, y)| ≤ K(1 + |y |M).
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Regularity solution Kolmogorov PIDE

Back to the Feller diffusion: dXx
t
= 2
√
XtdWt

Theorem (see Proposition 4.1. in [Alfonsi, 2005])

Given f ∈ Ckpol, ∂αx u(t, x) is well defined and in Ckpol for all α ∈ N.
Moreover it is a classical solution of the PDE

∂tu(t, x) + 2x∂
2

xu(t, x) = 0,

u(T, x) = f (x).

Proof:

For all m ≥ 0 Ex
�
(Xt)m

�
= E

�
(Ltx)

m

�
<∞.

�→ for all l ≥ 0 ∂ lsv(s, y) is smooth and of polynomial growth
�→ for all l ≥ 0 ∂kx u(x, t) is smooth and of polynomial growth
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Path approximation by Time-Space transformations

Regularity solution Kolmogorov PIDE

Conclusions



Pathspace Representation of Affine Processes

Conclusions

Conclusions and future research

1. The understanding of linear processes as path valued Lévy
processes leads to numerical schemes based on the
approximation of ‘easy to simulate’ processes.

2. Higher order schemes can be derived by performing a
Strang splitting instead of the Lie-Trotter splitting.

3. This perspective allows us to consider path dependent
options written on a stock driven by an Affine process as a
European style option written on a path valued process.
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Lévy Khintchine decomposition of �x,Ψ(t, u)�

For i = 1, . . . , m

Ψi(t, u) = �bi(t), u�+
1

2
�πJu,σi(t)πJu� − ci(t)

+

�

D\{0}

�
e
�u,ξ� − 1− �πJu,πJh(ξ)�

�
νi(t, dξ)

For j = m + 1, . . . , d

Ψj(t, u) =
�
bj(t), u

�
.+
1

2
�πJu,σi(t)πJu�

+

�

D\{0}

�
e
�u,ξ� − 1− �πJu,πJh(ξ)�

�
νi(t, dξ)
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Lévy Khintchine decomposition of �x,R(u)�

For i = 1, . . . , m

Ri(u) = �βi , u�+
1

2

�
πJu,α

i

J
πJu

�
+
1

2
α
2

i ,i
u
2

i
− γi

+

�

D\{0}

�
e
�u,ξ� − 1−

�
πJ∪{i}u,πJ∪{i}h(ξ)

��
νi(t, dξ)

For j = m + 1, . . . , d

Rj(u) =
�
βj , u

�
.+
1

2
�πJu,σi(t)πJu�

+

�

D\{0}

�
e
�u,ξ� − 1−

�
πJ∪{i}u,πJ∪{i}h(ξ)

��
νi(t, dξ)

Back to main .
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Construction

step1: Define the family of Markov kernels (℘s(x, ·))s≥0

℘s(x, A) : (D∆,B(D∆)) → (D(R≥0;D∆),F),

by ℘s(x, A) := Psx(A), A ∈ F
� it is a convolution semigroup:
℘s+t(x, ·) = P(s+t)x = Psx ∗ Ptx =
℘s(x, ·) ∗ ℘t(x, ·),

� ℘1 = Px .
step2: D(R≥0;D∆)[0,1] := {� : [0, 1]→ D(R≥0;D∆)}.
step3: for any fixed x ∈ D, define the map

Lsx : D(R≥0;D∆)[0,1] → D(R≥0;D∆)
� �→ �s .

step4: (Gs)s∈[0,1] the natural filtration generated by L.
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Kolmogorov’s existence Theorem

There exists a probability measure P on
(D(R≥0;D∆)[0,1],

�
s∈[0,1] Gs) such that, for fixed x ∈ D∆

P (Ls1x ∈ dω1, . . . , Lsnx ∈ dωn) =
n�

k=1

℘sk−sk−1(x, dωk − ωk−1),

with 0 = s0 ≤ s1 ≤ . . . ≤ sn ≤ 1.

� (Lsx)s∈[0,1] a stochastic process taking values in D(R≥0;D∆)
with stationary and independent increments,

� In distribution L1x coincide with Xx .
� It is stochastically continuous, i.e. lims→t ℘s(x, ·) = ℘t(x, ·)
weakly on D(R≥0;D∆) for every t ≥ 0 and x ∈ D.

Back to main .
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Admissible parameters

For an affine process on Rm≥0 × Rn we can specify a set of
admissible parameters

(b,β, a,α, c, γ, m,M).

with

� b,βi ∈ Rd , i = 1, . . . , d,
� a,αi , i = 1, . . . , d semi-definite positive matrices,
� c, γi ∈ R≥0, i = 1, . . . , d,
� m,Mi , i = 1, . . . , d Lévy measures,

where d = n +m.
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Admissible parameters

This set of parameters is called admissible for D = Rm≥0 × Rn if

diffusion
ak,h = 0 for k ∈ I or h ∈ J,
αj = 0 for all j ∈ J,
(αi)k,h = 0 if k ∈ I \ {i} or h ∈ I \ {i},
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Admissible parameters

This set of parameters is called admissible for D = Rm≥0 × Rn if

drift
b ∈ D,
(βi)k ≥ 0 for all i ∈ I and k ∈ I \ {i},
(βj)k = 0 for all j ∈ J, k ∈ I
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Admissible parameters

This set of parameters is called admissible for D = Rm≥0 × Rn if

killing
γj = 0 for all j ∈ J,

jumps
suppm ⊆ D and

�
D\{0}

�
(|xI |+ |xJ |2) ∧ 1

�
m(dx) <∞,

Mj = 0 for all j ∈ J,
suppMi ⊆ D for all i ∈ I and�

d\{0}
�
(|πI\{i}(x)|+ |πJ∪{i}(x)|2) ∧ 1

�
Mi(dx) <∞

for all i ∈ I

Back to main .
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Heston Model

dX
x

t =
�
Xx
t
dBt , d Y

y

t
= −
X
x
t

2
dt +

�
Xx
t
dWt

R
H

1 (u1, u2) =
1

2

�
u
2

1 + u
2

2 − u2
�
, R

H

2 (u1, u2) = 0

Idea: Solve the homogenous problem and then apply nonlinear
variation of constants.

ΨH1 (t, u1, u2) = u1 +

�
t

0

R
C(ΨH1 (s, u1, u2))ds

� �� �
homogeneus part

+tRH1 (0, u2)

= ΨC(t, u1)

+RH1 (0, u2)

�
t

0

∂vΨ
C(t − s,Ψ(s, u1, u2))ds

� �� �
Approximate by quadrature
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The connection

Higher order approximation of the integral term coincides with
higher approximation of the process.

Due to the representation of the
Heston model as a time changed
Brownian motion, one has

E(x,0)
�
e
�u,Yt�

�
= exΨI(t,R

H

1
(0,u))

,

where xΨI is the logarithm of
the Fourier–Laplace transform of
the process I. The picture shows
some approximated paths of Y
when the path integral process
I is approximated by composite
trapezoid rule.
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