Affine processes from the perspective of path-space valued Lévy processes

Nicoletta Gabrielli

ETH Zürich
nicoletta.gabrielli@math.ethz.ch

$$
\text { July 17, } 2014
$$

Structure of the talk

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

Examples of affine processes 1

Lévy processes

$$
\begin{aligned}
Y_{t}= & \mathbf{y}+\boldsymbol{\mu} \mathbf{t}+\boldsymbol{\sigma} \mathbf{B}_{\mathrm{t}}+\int_{0}^{t} \int \xi 1_{\{|\xi| \leq 1\}}\left(J^{\curlyvee}(d \xi, d s)-m(d \xi) d s\right) \\
& +\int_{0}^{t} \int \xi 1_{\{|\xi|>1\}} J^{\curlyvee}(d \xi, d s)
\end{aligned}
$$

where (μ, α, m) is a Lévy triplet in \mathbb{R}^{n}, with $\alpha=\sigma \sigma^{\top}$.

Examples of affine processes 1

Lévy processes

$$
\begin{aligned}
Y_{t}= & \mathbf{y}+\boldsymbol{\mu} \mathbf{t}+\boldsymbol{\sigma} \mathbf{B}_{\mathrm{t}}+\int_{0}^{t} \int \xi 1_{\{|\xi| \leq 1\}}\left(J^{\curlyvee}(d \xi, d s)-m(d \xi) d s\right) \\
& +\int_{0}^{t} \int \xi 1_{\{|\xi|>1\}} J^{Y}(d \xi, d s)
\end{aligned}
$$

where (μ, α, m) is a Lévy triplet in \mathbb{R}^{n}, with $\alpha=\sigma \sigma^{\top}$.

$$
\mathbb{E}^{y}\left[e^{\left\langle u, Y_{t}\right\rangle}\right]=e^{t \eta(u)+\langle y, u\rangle}, \quad u \in i \mathbb{R}^{n}
$$

Examples of affine processes 2

Heston model

$$
\left\{\begin{array}{l}
V_{t}=v+b t+\beta \int_{0}^{t} V_{s} d s+s \int_{0}^{t} \sqrt{V_{s}} d B_{s}^{1} \\
Y_{t}=y-\frac{1}{2} \int_{0}^{t} V_{s} d s+\int_{0}^{t} \sqrt{V_{s}} d B_{s}^{2}
\end{array}\right.
$$

where

- $\beta, \varsigma \in \mathbb{R}, b \in \mathbb{R}_{\geq 0}$,
- $B=\left(B^{1}, B^{2}\right)$ is a Brownian motion in \mathbb{R}^{2} with correlation.

Examples of affine processes 2

Heston model

$$
\left\{\begin{array}{l}
V_{t}=v+b t+\beta \int_{0}^{t} V_{s} d s+s \int_{0}^{t} \sqrt{V_{s}} d B_{s}^{1} \\
Y_{t}=y-\frac{1}{2} \int_{0}^{t} V_{s} d s+\int_{0}^{t} \sqrt{V_{s}} d B_{s}^{2}
\end{array}\right.
$$

where

- $\beta, \varsigma \in \mathbb{R}, b \in \mathbb{R}_{\geq 0}$,
- $B=\left(B^{1}, B^{2}\right)$ is a Brownian motion in \mathbb{R}^{2} with correlation.

$$
\mathbb{E}^{(v, y)}\left[e^{u_{1} v_{t}+u_{2} Y_{t}}\right]=e^{\phi\left(t, u_{1}, u_{2}\right)+v \psi\left(t, u_{1}, u_{2}\right)+y u_{2}}, \quad\left(u_{1}, u_{2}\right) \in \mathrm{i} \mathbb{R}^{2}
$$

Examples of affine processes 3

Bates model

$$
\left\{\begin{array}{l}
V_{t}=v+b t+\beta \int_{0}^{t} V_{s} d s+\varsigma \int_{0}^{t} \sqrt{V_{s}} d B_{s}^{1} \\
Y_{t}=y-\frac{1}{2} \int_{0}^{t} V_{s} d s+\int_{0}^{t} \sqrt{V_{s}} d B_{s}^{2}+J_{t},
\end{array}\right.
$$

where

- J is a compound Poisson process

Examples of affine processes 3

Bates model

$$
\left\{\begin{array}{l}
V_{t}=v+b t+\beta \int_{0}^{t} V_{s} d s+\varsigma \int_{0}^{t} \sqrt{V_{s}} d B_{s}^{1} \\
Y_{t}=y-\frac{1}{2} \int_{0}^{t} V_{s} d s+\int_{0}^{t} \sqrt{V_{s}} d B_{s}^{2}+J_{t} .
\end{array}\right.
$$

where

- J is a compound Poisson process

$$
\mathbb{E}^{(v, y)}\left[e^{u_{1} V_{t}+u_{2} Y_{t}}\right]=e^{\phi\left(t, u_{1}, u_{2}\right)+v \psi\left(t, u_{1}, u_{2}\right)+y u_{2}}, \quad\left(u_{1}, u_{2}\right) \in \mathbb{i} \mathbb{R}^{2} .
$$

In the above examples:
\checkmark stochastic variance process in $\mathbb{R}_{\geq 0}^{m}$,
Y (discounted) log-price process in \mathbb{R}^{n},
and
■ $X:=(V, Y)$ is a time homogeneous Markov process in $D:=\mathbb{R}_{\geq 0}^{m} \times \mathbb{R}^{n}$,
■ there exist functions $\phi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}$ and $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}^{d}$ such that

$$
\mathbb{E}^{(v, y)}\left[e^{\left\langle u_{1}, V_{t}\right\rangle+\left\langle u_{2}, Y_{t}\right\rangle}\right]=e^{\phi\left(t, u_{1}, u_{2}\right)+\left\langle v, \Psi\left(t, u_{1}, u_{2}\right)\right\rangle+\left\langle y, u_{2}\right\rangle}
$$

for $u=\left(u_{1}, u_{2}\right) \in \mathcal{U}$, where $\mathcal{U}=\mathrm{i} \mathbb{R}^{m+n}$.

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

Definition

Let

$$
\left(\Omega,\left(X_{t}\right)_{t \geq 0},\left(\mathcal{F}_{t}^{\natural}\right)_{t \geq 0},\left(p_{t}\right)_{t \geq 0},\left(\mathbb{P}^{x}\right)_{x \in D}\right)
$$

be a time homogeneous Markov process. The process X is said to be an affine process if it satisfies the following properties:

■ for every $t \geq 0$ and $x \in D, \lim _{s \rightarrow t} p_{s}(x, \cdot)=p_{t}(x, \cdot)$ weakly,

- there exist functions $\phi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}$ and $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}^{d}$ such that

$$
\begin{aligned}
& \qquad \mathbb{E}^{x}\left[e^{\left\langle u, X_{t}\right\rangle}\right]=\int_{D} e^{\langle u, \xi\rangle} p_{t}(x, d \xi)=e^{\phi(t, u)+\langle x, \psi(t, u)\rangle}, \\
& \text { for all } x \in D \text { and }(t, u) \in \mathbb{R}_{\geq 0} \times \mathcal{U} .
\end{aligned}
$$

Additional notation

Henceforth

$$
\begin{aligned}
D & =\mathbb{R}_{\geq 0}^{m} \times \mathbb{R}^{n} \subseteq \mathbb{R}^{d} \\
D_{\Delta} & =D \cup\{\Delta\} \\
\mathcal{U} & =\mathbb{C}_{\leq 0}^{m} \times i \mathbb{R}^{n}, \\
/ & =\{1, \ldots, m\}, \\
J & =\{m+1, \ldots, d\} .
\end{aligned}
$$

Given a set $H \subseteq\{1, \ldots, d\}$,

$$
\begin{aligned}
\pi_{H}: \mathbb{R}_{\geq 0}^{m} \times \mathbb{R}^{n} & \rightarrow \mathbb{R}_{\geq 0}^{H} \\
x & \mapsto \pi_{H} x:=\left(x_{i}\right)_{i \in H}
\end{aligned}
$$

Regularity

(Stochastic continuity + Affine property)

\downarrow [Cuchiero and Teichmann, 2011]

Càdlàg paths

\downarrow [Keller Ressel et al., 2011]
Regularity

Generalized Riccati equations

On the set $\mathcal{Q}=\mathbb{R}_{\geq 0} \times \mathcal{U}$, the functions ϕ and Ψ satisfy the following system of generalized Riccati equations:

$$
\begin{aligned}
& \partial_{t} \phi(t, u)=F(\Psi(t, u)), \\
& \partial_{t} \Psi(t, u)=R(\Psi(t, u)=0 \\
&
\end{aligned}
$$

Lévy-Khintchine form for the vector fields

Theorem

The functions F and R_{k}, for each $k=1, \ldots, d$, have the following Lévy-Khintchine form

$$
\begin{aligned}
F(u) & =\langle b, u\rangle+\frac{1}{2}\langle u, a u\rangle-c \\
& +\int_{D \backslash\{0\}}\left(e^{\langle u, \xi\rangle}-1-\langle\pi J u, \pi J h(\xi)\rangle\right) m(d \xi), \\
R_{k}(u) & =\left\langle\beta_{k}, u\right\rangle+\frac{1}{2}\left\langle u, \alpha_{k} u\right\rangle-\gamma_{k} \\
& +\int_{D \backslash\{0\}}\left(e^{\langle u, \xi\rangle}-1-\left\langle\pi_{J \cup\{k\}} u, \pi_{J \cup\{k\}} h(\xi)\right\rangle\right) M_{k}(d \xi) .
\end{aligned}
$$

Admissible parameters

For an affine process on $\mathbb{R}_{\geq 0}^{m} \times \mathbb{R}^{n}$ we can specify a set of admissible parameters

$$
(b, \beta, a, \alpha, c, \gamma, m, M)
$$

with
■ $b, \beta_{i} \in \mathbb{R}^{d}, i=1, \ldots, d$,
■ $a, \alpha_{i}, i=1, \ldots, d$ semi-definite positive matrices,

- $c, \gamma_{i} \in \mathbb{R}_{\geq 0}, i=1, \ldots, d$,

■ $m, M_{i}, i=1, \ldots, d$ Lévy measures,
where $d=n+m$.

diffusion	
$a_{k l}=0$ for $k \in I$ or $I \in I$, $\alpha_{j}=0$ for all $j \in J$, $\left(\alpha_{i}\right)_{k l}=0$ if $k \in I \backslash\{i\}$ or $I \in I \backslash\{i\}$, drift $b \in D$, $\left(\beta_{i}\right)_{k} \geq 0$ for all $i \in I$ and $k \in I \backslash\{i\}$, $\left(\beta_{j}\right)_{k}=0$ for all $j \in J, k \in I$, killing $\gamma_{j}=0$ for all $j \in J$, jumps $\operatorname{supp} m \subseteq D$ and $\int\left(\left(\left\|\pi_{l} \xi\right\|+\left\|\pi_{J} \xi\right\|^{2}\right) \wedge 1\right) m(d \xi)<\infty$, $M_{j}=0$ for all $j \in J$, $\operatorname{supp} M_{i} \subseteq D$ for all $i \in I$ and $\int\left(\left(\left\|\pi_{\backslash \backslash i j} \xi\right\|+\left\|\pi_{J \cup\{i j} \xi\right\|^{2}\right) \wedge 1\right) M_{i}(d \xi)<\infty$.	

Some remarks

- The theory of affine processes has being dominated by weak constructions.

■ Stochastic continuity and the affine property are sufficient for the existence of a version with càdlàg trajectories, which can be defined on the canonical probability space of càdlàg paths.

Here:

- We given an alternative construction of affine property in "strong sense".

■ The existence result relies on a time-space transformation of Lévy trajectories.
■ Càdlàg property follows directly from the construction.

Kallsen's conjecture

Theorem (Theorem 3.4 in [Kallsen, 2006])

Let X be an affine process with set of admissible parameters ($b, \beta, a, \alpha, 0,0, m, M$). On a possibly enlarged probability space, there exist $d+1$ independent \mathbb{R}^{d}-valued Lévy processes $Z^{(k)}, k=0, \ldots, d$ such that

$$
X_{\mathrm{t}} \stackrel{\text { law }}{=} x+Z_{\mathrm{t}}^{(0)}+\sum_{k=1}^{d} Z_{\int_{0}^{t} X_{r}^{(k)} d r}^{(k)}
$$

Question: Is it possible to construct X in a pathwise sense?

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

From affine processes to linear processes

Let $A P(D)$ be the space of affine processes with state space D. Define the map

$$
\begin{aligned}
\infty: A P\left(\mathbb{R}_{\geq 0}^{m} \times \mathbb{R}^{n}\right) & \rightarrow A P\left(\mathbb{R}_{\geq 0}^{m+1} \times \mathbb{R}^{n}\right) \\
X & \mapsto X^{\infty}
\end{aligned}
$$

Input: X with $\mathbb{E}^{x}\left[e^{\left\langle u, X_{t}\right\rangle}\right]=e^{\phi(t, u)+\langle x, \Psi(t, u)\rangle}$
Output: X^{∞} with $\mathbb{E}^{X^{\infty}}\left[e^{\left\langle u, X_{t}^{\infty}\right\rangle}\right]=e^{\left\langle x^{\infty}, \psi^{\infty}(t, u)\right\rangle}$

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

From AP to semi-homogeneous AP

Theorem 5.1 in [Keller-Ressel et al., 2011]

Let X be an affine process. Recall that, there exists $\mathcal{B}_{J} \in \mathbb{R}^{n \times n}$ such that $\pi J R(u)=\mathcal{B}_{j}^{\top} u$. Define the matrix

$$
T=\left(\begin{array}{c|c}
l & 0 \\
\hline 0 & \mathcal{B}_{J}^{\top}
\end{array}\right) \in \mathbb{R}^{d \times d}
$$

and the map

$$
\begin{aligned}
\mathcal{T}: A P(D) & \rightarrow A P(D) \\
X & \mapsto X-T^{\top} \int_{0} X_{s} d s
\end{aligned}
$$

The map \mathcal{T} is a bijection between affine processes of with $\pi_{J} R(u)=\mathcal{B}_{j}^{\top} u$ and the class of affine processes with $\pi_{J} R(u)=0$.

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

The result

Theorem [G. and Teichmann, 2014b]

Let (F, R) be a couple of functional characteristics such that $F=0$ and $\pi_{\jmath} R=0$. Let $Z^{(1)}, \ldots, Z^{(\mathrm{m})}$ be independent \mathbb{R}^{d}-valued Lévy processes with

$$
\mathbb{E}\left[e^{\left\langle u, Z_{t}^{(k)}\right\rangle}\right]=e^{t R_{k}(u)}, \quad u \in \mathcal{U}
$$

Then the time-change equation

$$
X_{t}=x+\sum_{k=1}^{m} Z_{\int_{0}^{t} X_{r}^{(k)} d r}^{(k)}
$$

admits a unique solution, which is an affine process with respect to the time-changed filtration.

Multiparameter time-change filtration

- Define

$$
Z=\left(Z_{1}^{(1)}, \ldots, Z_{d}^{(1)}, \ldots, Z_{1}^{(m)}, \ldots, Z_{d}^{(m)}\right)=:\left(Z^{(1)}, \ldots, Z^{(m d)}\right)
$$

■ For all $\underline{s}=\left(s_{1}, \ldots, s_{m d}\right) \in \mathbb{R}_{\geq 0}^{m d}$

$$
\mathcal{G}_{\underline{s}}^{\natural}:=\sigma\left(\left\{Z_{t_{h}}^{(h)}, t_{h} \leq s_{h}, \text { for } h=1, \ldots, m d\right\}\right) .
$$

- Complete it by $\mathcal{G}_{\underline{s}}=\bigcap_{n \in \mathbb{N}} \mathcal{G}_{\underline{s}^{(n)}+\frac{1}{n}} \vee \sigma(\mathcal{N})$.

Definition

A random variable $\underline{\tau}=\left(\tau_{1}, \ldots, \tau_{m d}\right) \in \mathbb{R}_{\geq 0}^{m d}$ is a $\left(\mathcal{G}_{\underline{s}}\right)$-stopping time if

$$
\{\underline{\tau} \leq \underline{s}\}:=\left\{\tau_{1} \leq s_{1}, \ldots, \tau_{m d} \leq s_{m d}\right\} \in \mathcal{G}_{\underline{s}}, \text { for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m d}
$$

If $\underline{\tau}$ is a stopping time,

$$
\mathcal{G}_{\underline{\tau}}:=\left\{B \in \mathcal{G} \mid B \cap\{\underline{\tau} \leq \underline{s}\} \in \mathcal{G}_{\underline{s}} \text { for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m d}\right\}
$$

Why only m terms?

$$
\binom{V_{t}}{Y_{t}}=\binom{v}{y}+Z_{t}^{(0)}+Z_{\int_{0}^{t} V_{s} d s}^{(1)}+Z_{\int_{0}^{t} Y_{s} d s}^{(2)}
$$

Why only m terms?

$$
\binom{V_{t}}{Y_{t}}=\binom{v}{y}+Z_{t}^{(0)}+Z_{\int_{0}^{t} V_{s} d s}^{(1)}+Z_{\int_{0}^{t} Y_{s} d s}^{(2)} .
$$

Why only m terms?

$$
\binom{V_{t}}{Y_{t}}=\binom{v}{y}+Z_{\int_{0}^{t} V_{s} d s}^{(1)}+Z_{\int_{0}^{t} Y_{s} d s}^{(2)} .
$$

Why only m terms?

$$
\binom{V_{t}}{Y_{t}}=\binom{v}{y}+Z_{\int_{0}^{t} V_{s} d s}^{(1)}
$$

Why only m terms?

$$
\binom{V_{t}}{Y_{t}}=\binom{v}{y}+Z_{\int_{0}^{t} V_{s} d s}^{(1)} .
$$

Question: Given a Lévy process $Z^{(1)}$ taking values in \mathbb{R}^{2}, is there a solution of

$$
\left\{\begin{array}{l}
V_{t}=v+Z_{1}^{(1)}\left(\int_{0}^{t} V_{s} d s\right) \\
Y_{t}=y+Z_{2}^{(1)}\left(\int_{0}^{t} V_{s} d s\right)
\end{array}\right.
$$

The one dimensional case

Question: Given a Lévy process Z taking values in \mathbb{R}, is there a solution of

$$
X_{t}=x+Z_{\int_{0}^{t} X_{s} d s}
$$

■ For the one dimensional case see also [Caballero et al., 2009, Caballero et al., 2013].

An ODE point of view in dimension 1

Introduce

$$
\tau(t):=\int_{0}^{t} X_{s} d s
$$

Does there exist a solution of

$$
\left\{\begin{array}{l}
\dot{\tau}(t)=x+Z(\tau(t)) \\
\tau(0)=0
\end{array}\right.
$$

Focus on $\mathbb{R}_{\geq 0}^{m}$

Lemma

If

$$
\left\{\begin{array}{l}
\dot{\tau}_{i}(t)=x_{i}+\sum_{k=1}^{m} Z_{i}^{(k)}\left(\int_{0}^{t} X_{r}^{(k)} d r\right) \\
\tau_{i}(0)=0
\end{array}\right.
$$

admits a solution for all $i=1, \ldots, m$, then it admits also a solution for all $i=1, \ldots, d$.

An ODE point of view in $\mathbb{R}_{\geq 0}^{m}$

Introduce

$$
\begin{align*}
\mathcal{Z}: \mathbb{R}_{\geq 0}^{m} & \rightarrow \mathbb{R}^{m} \\
\underline{s} & \mapsto \sum_{i=1}^{m} Z^{(i)}\left(s_{i}\right) . \tag{1}
\end{align*}
$$

Does there exist a solution $\underline{\tau} \in \mathbb{R}_{\geq 0}^{m}$ of

$$
\left\{\begin{array}{l}
\dot{\underline{\tau}}(t)=x+\mathcal{Z}(\underline{\tau}(t)), \\
\underline{\tau}(0)=0
\end{array}\right.
$$

Decomposition of \mathcal{Z}

The Lévy-Itô decomposition together with the canonical form of the admissible parameters give

$$
\begin{aligned}
Z_{t}^{(i)}= & \beta_{i} t+\sigma_{i} B_{t}^{(i)}+\int_{0}^{t} \int \xi 1_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int \xi 1_{\{|\xi| \leq 1\}}\left(\mathcal{J}^{(i)}(d \xi, d s)-M_{i}(d \xi) d s\right)
\end{aligned}
$$

where $\sigma_{i}=\sqrt{\left(\alpha_{i}\right)_{i i}}, B^{(i)}$ is a process in \mathbb{R}^{m} which evolves only along the the i-th coordinate as Brownian motion and $\mathcal{J}^{(i)}$ is the jump measure of the process $Z^{(i)}$.

- Decompose

$$
Z^{(i)}=: \tilde{Z}^{(i)}+\tilde{Z}^{(i)}
$$

where $\tilde{Z}^{(i)}$ and $\tilde{Z}^{(i)}$ are two stochastic processes on \mathbb{R}^{m} defined by

$$
\begin{aligned}
\tilde{Z}_{i}^{(i)}(t):=\left(\beta_{i}\right)_{i} t+\sigma_{i} B^{(i)}(t) & +\int_{0}^{t} \int \xi_{i} 1_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int \xi_{i} 1_{\{|\xi| \leq 1\}} \widetilde{\mathcal{J}}^{(i)}(d \xi, d s)
\end{aligned}
$$

$$
\tilde{z}_{k}^{(i)}(t):=0,
$$

for $k \neq i$,

$$
\begin{aligned}
\stackrel{\sim}{Z}^{(i)}(t):=\stackrel{\sim}{\beta}_{i} t & +\int_{0}^{t} \int\left(\xi-\xi_{i} e_{i}\right) 1_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int\left(\xi-\xi_{i} e_{i}\right) 1_{\{|\xi| \leq 1\}} \widetilde{\mathcal{J}}^{(i)}(d \xi, d s) .
\end{aligned}
$$

where $\stackrel{\sim}{\beta}_{i}=\beta_{i}-e_{i}\left(\beta_{i}\right)_{i}$ and $\widetilde{\mathcal{J}}^{(i)}$ is the compensated jump measure.

Approximation of the jump part

- Introduce, for all $\underline{s} \in \mathbb{R}_{\geq 0}^{m}$,

$$
\tilde{\mathcal{Z}}(\underline{s}):=\sum_{i=1}^{m} \tilde{Z}^{(i)}\left(s_{i}\right), \quad \stackrel{\nsim \mathcal{Z}}{ }(\underline{s}):=\sum_{i=1}^{m}{\underset{Z}{Z}}^{(i)}\left(s_{i}\right)
$$

■ Fix $M \in \mathbb{N}$ and consider the partition

$$
\mathcal{T}_{M}:=\left\{\frac{k}{2^{M}}, \quad k \geq 0\right\}
$$

■ Define the following approximations on the partition \mathcal{T}_{M} :

$$
\begin{aligned}
\uparrow{\underset{Z}{t}}_{(i, M)}: & =\sum_{k=0}^{\infty} \stackrel{\chi}{Z}_{k / 2^{M}}^{(i)} 1_{\left[\frac{k}{2 M}, \frac{k+1}{2 M}\right)}(t), \\
\uparrow_{\mathcal{Z}} \mathcal{Z}^{(M)}(\underline{s}) & : \\
=\sum_{i=1}^{m} \uparrow{ }_{Z}^{\chi}(i, M) & \left(s_{i}\right),
\end{aligned}
$$

Construction of the time-change process

Theorem [G. and Teichmann, 2014b]
There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014b]
There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t\right) & =(\mathbf{x}+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014b]
There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; t\right)\right) \\
\underline{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; \mathbf{t}_{0}\right) & =\boldsymbol{\tau}_{0}
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

The proof

step 1 Decompose $x+\mathcal{Z}=x+\tilde{\mathcal{Z}}+\stackrel{\sim}{\mathcal{Z}}$
step 2 Approximate $x+\tilde{\mathcal{Z}}+\underset{\mathcal{Z}}{\sim} \sim x+\tilde{\mathcal{Z}}+\uparrow^{\tilde{Z}}(M)$

Solution of the decoupled system

Theorem (Theorem VI.1.1 in [Ethier and Kurtz, 1986])

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tilde{\tau}}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =(x+\tilde{\mathcal{Z}})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

with $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

The proof

- Set

$$
\begin{aligned}
\left(t_{0}, \tau_{0}, x\right) & :=(0,0, x) \\
\overleftarrow{\sigma} & :=(0, \ldots, 0) \\
\vec{\sigma} & :=\left(\sigma_{1}^{(1, M)}, \ldots, \sigma_{1}^{(i, M)}, \ldots, \sigma_{1}^{(m, M)}\right)
\end{aligned}
$$

■ Solve

$$
\left\{\begin{aligned}
\dot{\underline{\tau}}((0,0, x) ; t) & =(x+\tilde{\mathcal{Z}})(\underline{\tau}((0,0, x) ; t)), \\
\underline{\tau}\left((0,0, x) ; t_{0}\right) & =\tau_{0},
\end{aligned}\right.
$$

for $t \in\left[0, t_{1}\right]$ where

$$
t_{1}:=\sup \left\{t>0 \mid \underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) \leq \vec{\sigma}\right\}
$$

Remark There might be one or more indices i^{*}, where equality holds. Collect them in a set $I^{*} \subseteq\{1, \ldots, m\}$.

- Update the values

$$
\begin{aligned}
& \pi_{l^{*}} \overleftarrow{\sigma}:=\pi_{/^{*}} \vec{\sigma} \\
& \pi_{l^{*}} \vec{\sigma}:=\pi_{l^{*}} \vec{\sigma}_{++}
\end{aligned}
$$

where $\vec{\sigma}_{++}$contains the next jumps of $\uparrow{ }^{\chi} Z^{(i, M)}$ for all $i \in I^{*}$ after $\vec{\sigma}_{i}$.

- Define

$$
\begin{aligned}
\tau_{1} & :=\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{1}\right) \\
x_{1} & :=x+\Delta^{\uparrow} \mathcal{Z}^{(M)}(\overleftarrow{\sigma})
\end{aligned}
$$

■ Solve

$$
\left\{\begin{aligned}
\dot{\tilde{\tau}}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right) & =\left(x_{1}+\widetilde{\mathcal{Z}}\right)\left(\underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t_{1}\right) & =\tau_{1}
\end{aligned}\right.
$$

for $t \in\left[t_{1}, t_{2}\right]$ where

$$
t_{1}:=\sup \left\{t>t_{1} \mid \underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right) \leq \vec{\sigma}\right\}
$$

- Define iteratively, for all $n \geq 1$

$$
\begin{aligned}
t_{n+1} & :=\sup \left\{t>0 \mid \underline{\tau}\left(\left(t_{n}, \tau_{n}, x_{n}\right) ; t\right) \leq \vec{\sigma}\right\} \\
\tau_{n+1} & :=\underline{\tau}\left(\left(t_{n}, \tau_{n}, x_{n}\right) ; t_{n+1}\right) \\
x_{n+1} & :=x_{n}+\Delta^{\uparrow} \mathcal{Z}^{(M)}(\overleftarrow{\sigma})
\end{aligned}
$$

where, at each step $\overleftarrow{\sigma}$ and $\vec{\sigma}$ are updated.

Solution of the approximated problem

Theorem

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}^{(M)}((0,0, x) ; t) & =\left(x+\tilde{\mathcal{Z}}+\uparrow^{\chi} \mathcal{Z}^{(M)}\right)\left(\underline{\tau}^{(M)}((0,0, x) ; t)\right), \\
\underline{\tau}^{(M)}\left((0,0, x) ; t_{0}\right) & =0 .
\end{aligned}\right.
$$

Moreover it holds

$$
\lim _{M \rightarrow \infty} \underline{\tau}^{(M)}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)=\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)
$$

where $\underline{\tau}$ solves

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

Outline

(1) What is an affine process?

- Examples
- Definitions
(2) Elementary transformations of AP
- From affine processes to linear processes
- From affine processes to semi-homogeneous affine processes
(3) Pathwise construction of affine processes
- Time-change techniques for affine processes
- Applications

Application: the Feller diffusion with jumps

The problem

$$
\text { given } Z_{t}=b t+B_{t}+\sum_{i=1}^{N_{t}} \mathbb{e}_{i}
$$

where
■ B is a Brownian motion,
$\square N$ is a Poisson process with rate λ,
■ \mathbb{E}_{i} are i.i.d. $\sim \mathcal{E} \operatorname{xp}(1)$,
construct $X=\left(X_{t}\right)_{t \geq 0}$ such that

$$
X=x+Z_{\int_{0} x_{r} d r}
$$

Application: the Feller diffusion with jumps

Observations

■ If $\mathbf{Z}_{\mathrm{t}}=\mathbf{b t}+\mathbf{B}_{\mathrm{t}}$, the solution of the time-change equation is an affine process that starts at x with

$$
F(u)=0, \quad R(u)=\frac{1}{2} u^{2}+b u, \quad u \in \mathcal{U}
$$

■ Exact simulation or splitting schemes are available.

- Decompose the paths

$$
Z_{t}=b t+B_{t}+\sum_{i=1}^{N_{t}} \mathbb{e}_{i}=\tilde{Z}_{t}+\stackrel{\nsim}{Z_{t}}
$$

Application: the Feller diffusion with jumps

Construction of the solution

Application: the Feller diffusion with jumps

Construction of the solution

Application: the Feller diffusion with jumps

Construction of the solution

Application: the Feller diffusion with jumps

Construction of the solution

Application: the Feller diffusion with jumps

Thank you for your attention

Bibliography I

Raballero, M., Lambert, A., and Uribe Bravo, G. (2009). Proof(s) of the Lamperti representation of continuous-state branching processes.
(Raballero, M. E., Pérez Garmendia, J. L., and Uribe Bravo, G. (2013).

A Lamperti-type representation of continuous-state branching processes with immigration.

- Cuchiero, C. and Teichmann, J. (2011).

Path properties and regularity of affine processes on general state spaces.
Ruffie, D., Filipović, D., and Schachermayer, W. (2003). Affine processes and applications in finance.

Bibliography II

國 Ethier，S．and Kurtz，T．（1986）．
Markov processes：Characterization and convergence．
目 G．，N．and Teichmann，J．（2014a）．
How to visualize the affine property．
R G．，N．and Teichmann，J．（2014b）．
Pathwise construction of affine processes．
击 Kallsen，J．（2006）．
A didactic note on affine stochastic volatility models．
围 Keller－Ressel，M．，Schachermayer，W．，and Teichmann，J．（2011）． Affine processes are regular．
围 Keller Ressel，M．，Schachermayer，W．，and Teichmann，J．（2011）． Regularity of affine processes on general state spaces．

