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Introduction

The Problem

given

- (X¥)tepo, 1) underlying stock

- f(X*) path dependent option depending on the whole path
up to time T

find ]E"[f(X)].

—

-

PDE Method Probabilistic Method

Discretize the path and integrate by

Solve numerically the pricing PDE Monte Carlo methods




Numerical approximation of trajectories

High dimensional state space

< High order numerical schemes

Domain constrains
< Geometry preserving schemes

Example (A guiding example)

t
[X;( =X+ 2/ \/XSdWS]
0
Ny/2t) /

Lt =2t Z ®k
k=1




Numerical approximation of trajectories

High dimensional state space
— High order numerical schemes

Domain constrains

— Geometry preserving schemes

Example (A guiding example)

t
0
Ny/(2t) /

L)t< =2t Z Ck
k=1




Numerical approximation of trajectories

High dimensional state space
— High order numerical schemes

Domain constrains
— Geometry preserving schemes

Example (A guiding example)
t
L(Xt :X+2/ \V Xdes}
0
Nys2t) /

Lt =2t Z ®k
k=1

XXt g Lt

X



Bibliography

@ N. Bouleau and O. Chateau.
Le processus de la subordination.

ﬁ N. Bouleau.
Stochastic approach for the subordination in Bochner sense.

@ D. Duffie, D. Filipovi¢, and W. Schachermayer.
Affine processes and applications in finance.

ﬁ J. Pitman and M. Yor.
A decomposition of Bessel Bridges.



Structure of the talk

Introduction

From Affine Processes to Lévy Processes and back
A representation theorem
An analytic approach

Applications
Path approximation by time-space transformations
CIR with jumps

Conclusions



Outline

Introduction

A representation theorem
An analytic approach

Path approximation by time-space transformations
CIR with jumps



Affine processes on the canonical state space

An affine processes on the canonical state space D = RZ) x R"
is a time homogeneous Markov process

X = (2 (Ft)t=0. (Pt) =0, (Xt) 20, (P*)xeDy)

satisfying the following properties:

e (stochastic continuity) for every t > 0 and x € D,
lims—t ps(x, -) = pe(x, ) weakly,

e (affine property) there exist functions ¢ : R, x Y — C and
W:R., x U — C? such that B

EX [e(u,Xﬁ} :/ e<“'5>pt(x, df) _ ed)(t,u)Jr(\U(t,u),x)
D
for all x € D and (t, u) € Ryy x U, with

U= {u e C? ] e is a bounded function on D}. (1)



From affine processes to linear processes
Let AP(D) be the space of affine processes with state space D.
Define the map

®: AP(RZy xR") — AP(RZS' x R")
X = X°®
Input: X with EX {e(u,Xﬁ] — e®(t.u)+(xV(t,u))

Output: X® with E() [e<u,X;")] — (L) Vt1) \yhere

Linear structure

There exists a function V¥ : Rzo x U — C? such that

X |:e<u,Xt>:| :/ (w8 p,(x, de) = eVt
D



Generalized Riccati equations

On the set @ =R, x U, the function V satisfies the following
system of generalized Riccati equations:

Generalized Riccati equations
OV(t,u) =R(V(t,u)), V(0O u)=u,

where for each k=1, ..., d the function Ry has the following
Lévy-Khintchine form

RA(0) = (e 0+ 5 (. ) =

+/ (e<“’5> —-1- <7[Ju{k}u, nJU{k}h(£)>) Mk(dg)
D\{0}



Infinite divisibility in D
Let C the convex cone of continuous function n : U — C,. of type

n(u) = (b, u) + % (Ttyu, ot yU)

+ /D\{O} <e<“’5) —1- <T[JU,7'[Jh(§)>> v(d§). (%)

Definition
A distribution A on Da is infinitely divisible if and only if its

Laplace transform takes the form e”(“)=¢ where 1 has the form
(*) and ¢ = log A(D).

pt(x, -) is infinitely divisible in D!



Lévy Khintchine decomposition of (x, W(t, u))

Wi(t, u) = (bi(t), u) + % (rtyu, oi(t)mu) — ci(t)
+ /D\{O} (e<”v5) —1- <7TJU,7'[Jh(£)>) vi(t, d€)
FOI’_j =m-+ 1,..., d

Wj(t, u) = (bj(t), u).



Lévy Khintchine decomposition of (x, R(u))

1 : 1
Ri(u) = (B, u) + 5 <7tJu, a’JnJu> + 50‘:2./"1/‘2 —

+ /D\{O} (e<u'£> —1- <T[JU{/}U'7TJU{[}h(£)>> Ml(dg)

Forj=m+1,..., d

Ri(u) = (Bj. u).
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From affine processes to Lévy processes

Let (D(Rsg; Da). (Ft)e=0. (Pt)r=0, (Xt)t>0. (PX)xep,) be a linear
process on the canonical state space D = Rgo x R,

Proposition

For each fixed t > 0 and x € D \ {0, A}, there exists process
(L% )sefo,1) such that:
1. LY=o,
2. forevery 0 < 53 < s, <1, the increment L, — L%, is
independent of the family (L%, )scpo,s;] and it distributed as
X§SQ—51)X.

Moreover for any fixed t > 0, and x € D there exists a unique
modification Lt of Lt which is a Lévy process with cadlag paths.



The proof

Apply Kolmogorov's existence Theorem with the convolution
semigroup (pe(sx, -))szo.

Chapman-Kolmogorov's equations — Semigroup property in

time

Ps+t(X, ) = ps - pe(x.-) == [ pe(x, dy)ps(y. ).

Linearity — Convolution property in space

pe(x +y. ) = pe(x, ) * pe(y. -)-



Let t run

Remark: Here t appears here as a parameter of (Léx)se[o,l]-

Idea: Let t evolve and consider the above construction on the
path space.

Result: Construct a path valued process (L, )se[o,1] Which starts
in zero and it reaches (X)>0 at time 1.



Make things rigorous

Theorem

There exists a process (Lsx)s>o0 taking values in D(R~q; Da) such
that -

1. it has stationary and independent increments,
2. It is stochastically continuous,
3. it holds

EX [e<u,xt>} — eV(tu) — [e<u.ew(L5x)>}

s=1

Proof: Apply Kolmogorov's existence Theorem with the
convolution semigroup ps(x, ) := P, s > 0.



Different scenarios

step 1 Solve W(t, u) = u+ [3 R(W(s, u))ds, u€U.
step 2 Do Lévy-Khintchine decomposition of W(t, u)

R g w(t, )

(8.0, M) ‘;— (b(t), a(t), v(t, )

step 1 Find R(u) := lim¢—0 w

step 2 Do Lévy-Khintchine decomposition of R



Insight into Bochner subordinator

Definition

A function W(t, u) : R4 X C?— C%is a ray if

(x,¥(t,u)) €C,

WY(t, u) in analytic in u and jointly continuous in (t, u),
V(t, u) is differentiable in t and lim;—o W(t, u) = v,
V(t+s,u)=V(t, V(s,u)).

> LW =

From Markov property, for any s,t >0

EX [e<u,xt+s>} — EX [e<xs,w(r,u)>] = e W(sV(tu))



An analytic approach

Semiflow property

Forany N>0and t >0
W(t, u) = V(h, u)°V
=W (hW(h,..., V(h,u))), h=

2|~

In general if

lim W(h, u)°N = W(t, u), uGLO{ then (x, W(t,u)) €C

N—o0
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Approximation of rays

1. Fix N >0, T > 0 and a partition
{to=0,t1=h,...,.ty = T} with h= .

2. Let y, be the approximation of W(t,, u).

Example: Forward Euler's method

For small h,

EX [e(u,Xh>] = eu+hxRW) ey

W X is infinitely divisible in D = RZ, x R" but (x, R(u)) has

the Lévy-Khintchine representation in R!

~+ Seek methods that preserve positivity of the semiflow.



Geometry preserving schemes

Input W(t,:)eC

yo(u) = u
Yo+1(u) = W(h, ya(u)) n=0,..., N-—1,

with (x, W(h,-)) € C for all x € D.

if Wisaray forany n=0,..., N, ya(u) = V(ty, u).
Output: X* affine process corresponding to Ly.

i N0t7 liMyssee Y (U) = W(T, u), where W(T, u) solves the
Riccati equation driven by r(u) = 0:W(t, u)_ .-
Output: X* with functional characteristic r.



Example 1: Feller diffusion «~ homographic ray

dXt = vV XedWt
XO =X

Affine process on R, with functional characteristic R(u) = “?2

One step Forward Euler's method

X; = x
Xt)-I(<+1 = Xt)'l(( +N(O' hy)lyzmax(o,)A(;;)' n = 0 ..... N — ]_

where A/(0, 02) is a normal random variable with mean 0 and
variance o2.



Example 1: Feller diffusion «~ homographic ray

E [euﬁi} = exp (Xl u

X5 = x
% h
Xk, o= (€ k>0

SX Szlyxzxg;( !

where L£ is a subordinator with
v(t, x, d¢) = e~ % de,

:?e t

ut

2

~ N

) . Re(u) <

(Xf)r=0 with Poisson Approx




Example 2: Neveu Branching «~ stable ray

E [e“yxt} =exp (—x(—u)e_t)
Affine process on Rso with functional characteristic
R(u) = —ulog(—u).

WI(t, u) is a ray :
X5 = x

Xg/(<+1 = (‘7 =il 4= X’“kzo'

where J£ is a subordinator with
v(t, X, d€) = riSemé 170 de.




A theorem for jump diffusions
Split

Ri(u) = (61, u) + 5 (v, o) = ri(w)
+ /D <e<“’5> -1- <7TJU{i}U:7TJU{i}h(£)>) M(d€) =:ri(u)

and consider

OVE(t, 1) = rY(VE(t, u)), OV (t, u) = r>(WI(t, u)).

Theorem

Let X* be a conservative affine process. The scheme

X5 = x,
X h h
ka+1 (£ oJ )XEL'

is a weak first order approximation for X*.



Approximation of the CIR with jumps

The model
t t
XK = x+/ chds—i—/ vV XsdWs
0

+/Ot/Dh(£)( ds, d€; X) ~ fo ds)
+/Ot/D(g_h(g))N(ds, dé; X).

g _
[

Remark: W(h, u) := WI (h, W~(h, u)) is NOT a ray but

OV(t,u), . = r'(u) + r’(u) = R(v).

R(u):;u2—|—cu+/ooo( e — 1 — uh(¢)) rt(u) + r?(v).
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Conclusions and future research

. The understanding of linear processes as path valued Lévy
processes leads to numerical schemes based on the
approximation of ‘easy to simulate’ processes.

. Higher order schemes can be derived by performing a
Strang splitting instead of the Lie-Trotter splitting.

. The method is flexible since it relies on the concept of
Bochner subordination.

. This perspective allows us to consider path dependent
options written on a stock driven by an Affine process as a
European style option written on a path valued process.



Thank you
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