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A representation theorem

An analytic approach

Applications

Path approximation by time-space transformations

CIR with jumps

Conclusions



Outline

Introduction

From Affine Processes to Lévy Processes and back
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Affine processes on the canonical state space
An affine processes on the canonical state space D = Rm≥0 × Rn
is a time homogeneous Markov process

X = (Ω, (Ft)t≥0, (pt)t≥0, (Xt)t≥0, (Px )x∈D∆
)

satisfying the following properties:

• (stochastic continuity) for every t ≥ 0 and x ∈ D,

lims→t ps(x , ·) = pt(x , ·) weakly,

• (affine property) there exist functions φ : R≥0 × U → C and

Ψ : R≥0 × U → Cd such that

Ex
[

e〈u,Xt〉
]

=

∫
D

e〈u,ξ〉pt(x , dξ) = eφ(t,u)+〈Ψ(t,u),x〉

for all x ∈ D and (t, u) ∈ R≥0 × U , with

U =
{

u ∈ Cd | e〈u,x〉 is a bounded function on D
}
. (1)



From affine processes to linear processes
Let AP(D) be the space of affine processes with state space D.

Define the map

m : AP(Rm≥0 × Rn) → AP(Rm+1
≥0 × R

n)

X 7→ X m

Input: X with Ex
[

e〈u,Xt〉
]

= eφ(t,u)+〈x ,Ψ(t,u)〉

Output: X m with E(1,x)
[

e〈u,X m
t 〉
]

= e〈(1,x),Ψ m(t,u)〉 where

Ψ m(t, u0, u1, . . . , ud) :=

(
φ(t, u1, . . . , ud) + u0

Ψ(t, u1, . . . , ud)

)

Linear structure

There exists a function Ψ : R≥0 × U → Cd such that

Ex
[

e〈u,Xt〉
]

=

∫
D

e〈u,ξ〉pt(x , dξ) = e〈Ψ(t,u),x〉.



Generalized Riccati equations

On the set Q = R≥0 × U , the function Ψ satisfies the following
system of generalized Riccati equations:

Generalized Riccati equations

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u,

where for each k = 1, . . . , d the function Rk has the following
Lévy-Khintchine form

Rk(u) = 〈βk , u〉+
1

2
〈u, αku〉 − γk

+

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
πJ∪{k}u,πJ∪{k}h(ξ)

〉)
Mk(dξ).



Infinite divisibility in D

Let C the convex cone of continuous function η : U → C+ of type

η(u) = 〈b, u〉+
1

2
〈πJu, σπJu〉

+

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈πJu,πJh(ξ)〉

)
ν(dξ). (*)

Definition

A distribution λ on D∆ is infinitely divisible if and only if its

Laplace transform takes the form eη(u)−c, where η has the form

(*) and c = logλ(D).

pt(x , ·) is infinitely divisible in D!



Lévy Khintchine decomposition of 〈x ,Ψ(t, u)〉

For i = 1, . . . ,m

Ψi(t, u) = 〈bi(t), u〉+
1

2
〈πJu, σi(t)πJu〉 − ci(t)

+

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈πJu,πJh(ξ)〉

)
νi(t, dξ)

For j = m + 1, . . . , d

Ψj(t, u) =
〈

bj(t), u
〉
.+

1

2
〈πJu, σi(t)πJu〉

+

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈πJu,πJh(ξ)〉

)
νi(t, dξ)



Lévy Khintchine decomposition of 〈x ,R(u)〉

For i = 1, . . . ,m

Ri(u) = 〈βi , u〉+
1

2

〈
πJu, αiJπJu

〉
+

1

2
α2i ,iu

2
i − γi

+

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
πJ∪{i}u,πJ∪{i}h(ξ)

〉)
Mi(dξ)

For j = m + 1, . . . , d

Rj(u) =
〈
βj , u

〉
.+

1

2
〈πJu, σi(t)πJu〉

+

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
πJ∪{i}u,πJ∪{i}h(ξ)

〉)
νi(t, dξ)



Outline

Introduction

From Affine Processes to Lévy Processes and back
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From affine processes to Lévy processes

Let (D(R≥0; D∆), (Ft)t≥0, (pt)t≥0, (Xt)t≥0, (Px )x∈D∆
) be a linear

process on the canonical state space D = Rm≥0 × Rn.

Proposition

For each fixed t > 0 and x ∈ D \ {0,∆}, there exists process

(Ltsx )s∈[0,1] such that:

1. Lt0 = 0,

2. for every 0 ≤ s1 ≤ s2 ≤ 1, the increment Lts2x − Lts1x is

independent of the family (Ltsx )s∈[0,s1] and it distributed as

X
(s2−s1)x
t .

Moreover for any fixed t ≥ 0, and x ∈ D there exists a unique

modification L̃t of Lt which is a Lévy process with càdlàg paths.



The proof

Apply Kolmogorov’s existence Theorem with the convolution

semigroup (pt(sx , ·))s≥0.

Chapman-Kolmogorov’s equations → Semigroup property in

time

ps+t(x , ·) = ps · pt(x , ·) :=
∫

pt(x , dy)ps(y , ·),

Linearity → Convolution property in space

pt(x + y , ·) = pt(x , ·) ∗ pt(y , ·).



Let t run

Remark: Here t appears here as a parameter of (Ltsx )s∈[0,1].

Idea: Let t evolve and consider the above construction on the

path space.

Result: Construct a path valued process (L·sx )s∈[0,1] which starts

in zero and it reaches (X xt )t≥0 at time 1.



Make things rigorous

Theorem

There exists a process (Lsx )s≥0 taking values in D(R≥0; D∆) such

that

1. it has stationary and independent increments,

2. it is stochastically continuous,

3. it holds

Ex
[

e〈u,Xt〉
]

= e〈x ,Ψ(t,u)〉 = E
[

e〈u,evt(Lsx )〉
]∣∣
s=1

Proof: Apply Kolmogorov’s existence Theorem with the

convolution semigroup ℘s(x , ·) := Psx , s ≥ 0.



Different scenarios

step 1 Solve Ψ(t, u) = u +
∫ t
0 R(Ψ(s, u))ds, u ∈ U .

step 2 Do Lévy-Khintchine decomposition of Ψ(t, u)

R

(β, σ,M)

Ψ(t, ·)

(b(t), σ(t), ν(t, ·))

step 1 Find R(u) := limt→0
Ψ(t,u)−u
t

step 2 Do Lévy-Khintchine decomposition of R



Insight into Bochner subordinator

Definition

A function Ψ(t, u) : R≥0 × Cd → Cd is a ray if

1. 〈x ,Ψ(t, u)〉 ∈ C,
2. Ψ(t, u) in analytic in u and jointly continuous in (t, u),

3. Ψ(t, u) is differentiable in t and limt→0Ψ(t, u) = u,

4. Ψ(t + s, u) = Ψ(t,Ψ(s, u)).

From Markov property, for any s, t ≥ 0

Ex
[

e〈u,Xt+s〉
]

= Ex
[

e〈Xs ,Ψ(t,u)〉
]

= e〈x ,Ψ(s,Ψ(t,u))〉.



An analytic approach

Semiflow property

For any N > 0 and t > 0

Ψ(t, u) = Ψ(h, u)◦N

:= Ψ (h,Ψ (h, . . . ,Ψ (h, u))) , h =
t

N
.

In general if

lim
N→∞

Ψ(h, u)◦N =: Ψ̃(t, u), u ∈
◦
U then 〈x , Ψ̃(t, u)〉 ∈ C.
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Approximation of rays

1. Fix N > 0, T > 0 and a partition

{t0 = 0, t1 = h, . . . , tN = T} with h = T
N .

2. Let yn be the approximation of Ψ(tn, u).

Example: Forward Euler’s method

For small h,

Ex
[

e〈u,Xh〉
]

= e〈x ,u〉+h〈x ,R(u)〉, u ∈ U .

X xt is infinitely divisible in D = Rm≥0 × Rn but 〈x ,R(u)〉 has

the Lévy-Khintchine representation in Rd !

 Seek methods that preserve positivity of the semiflow.



Geometry preserving schemes

Input Ψ(t, ·) ∈ C

y0(u) = u

yn+1(u) = Ψ(h, yn(u)) n = 0, . . . ,N − 1,

with 〈x ,Ψ(h, ·)〉 ∈ C for all x ∈ D.

if Ψ is a ray for any n = 0, . . . ,N, yn(u) = Ψ(tn, u).
Output: X x affine process corresponding to Lx .

if not? limN→∞ yN(u) = Ψ̃(T , u), where Ψ̃(T , u) solves the

Riccati equation driven by r(u) = ∂tΨ(t, u)|t=0+ .
Output: X x with functional characteristic r.



Example 1: Feller diffusion ! homographic ray

{
dXt =

√
XtdWt

X0 = x

Affine process on R≥0 with functional characteristic R(u) = u2

2 .

One step Forward Euler’s method

X̂ x0 = x

X̂ xtk+1
= X̂ xtk +N (0, hy)|y=max(0,X̂ xtk

)
, n = 0, . . . ,N − 1.

where N (0, σ2) is a normal random variable with mean 0 and

variance σ2.



Example 1: Feller diffusion ! homographic ray

E
[

euL
t
x

]
= exp

(
x

u

1− ut2

)
, Re(u) <

2

t
,

ΨL is a ray

X̂ x0 = x ,

X̂ xtk+1
= (Lhsx )s=1,x=X̂ xtk

, k ≥ 0

where Lt·x is a subordinator with

ν(t, x , dξ) := 4x
t2

e−
2ξ
t dξ.
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Example 2: Neveu Branching ! stable ray

E
[

euJ
t
x

]
= exp

(
−x(−u)e

−t
)

Affine process on R≥0 with functional characteristic

R(u) = −u log(−u).

ΨJ (t, u) is a ray

X̂ x0 = x

X̂ xtk+1
= (J hsx )s=1,x=X̂ xtk

, k ≥ 0.

where J t·x is a subordinator with

ν(t, x , dξ) := xe−t

Γ(1−e−t)ξ
−1−e−tdξ.



A theorem for jump diffusions
Split

Ri(u) = 〈βi , u〉+
1

2
〈u, αiu〉 =: r1i (u)

+

∫
D

(
e〈u,ξ〉 − 1−

〈
πJ∪{i}u,πJ∪{i}h(ξ)

〉)
Mi(dξ) =: r2i (u)

and consider

∂tΨ
L(t, u) = r1(ΨL(t, u)), ∂tΨ

J (t, u) = r2(ΨJ (t, u)).

Theorem

Let X x be a conservative affine process. The scheme

X̂ x0 = x ,

X̂ xtk+1
= (Lh ◦ J h)

X̂ xtk
,

is a weak first order approximation for X x .



Approximation of the CIR with jumps

The model

X xt = x +

∫ t
0

cXsds +

∫ t
0

√
XsdWs

+

∫ t
0

∫
D

h(ξ)

(
N(ds, dξ; X )−

dξ

ξ2
Xsds

)
+

∫ t
0

∫
D

(ξ − h(ξ)) N(ds, dξ; X ).

R(u) =
1

2
u2 + cu +

∫ ∞
0

(
euξ − 1− uh(ξ)

) dξ

ξ2
=: r1(u) + r2(u).

Remark: Ψ(h, u) := ΨJ (h,ΨL(h, u)) is NOT a ray but

∂tΨ(t, u)|t=0+ = r1(u) + r2(u) = R(u).
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Conclusions and future research

1. The understanding of linear processes as path valued Lévy

processes leads to numerical schemes based on the

approximation of ‘easy to simulate’ processes.

2. Higher order schemes can be derived by performing a

Strang splitting instead of the Lie-Trotter splitting.

3. The method is flexible since it relies on the concept of

Bochner subordination.

4. This perspective allows us to consider path dependent

options written on a stock driven by an Affine process as a

European style option written on a path valued process.



Thank you
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