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Introduction and motivations

Set up

The state space: D ⊂ Rd

The model: X = (Ω, (Ft)t≥0, (Xt)t≥0, (Px)x∈D∆
) càdlàg, time

homogeneous, conservative Markov process in D

pt(x, A) = Px(Xt ∈ A), t ≥ 0, x ∈ D, A ∈ B(D).

The problem: Compute

Pt f (x) := Ex
[
f (Xt)

]
,

t ≥ 0, x ∈ D, f ∈M.
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Introduction and motivations

Option Pricing

The problem:

given

- (Xt)t∈[0,T ] stock process

- H payoff function, possibly depending on the whole path up

to time T

find Ex
[
H(Xt , t ∈ [0, T ])

]
.
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Approximation of trajectories by MC methods

step 1 Fix a uniform partition in [0, T ]

{t0 = 0, . . . , tk = kh, . . . , tN = T}, h = T
N .

step 2 Find a piecewise constant approximating process

(X̂tk )k=0,...,N such that

- X̂xt0 = x,

- X̂x is a weak ν−order approximation of Xx .

Definition

For every f ∈ C∞ with compact support there exists a K > 0

such that ∣∣∣Ex[f (XT )
]
− E

[
f (X̂xtN )

]∣∣∣ ≤ Khν .
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Example

Heston model

Suppose X = (V, Y ) with{
Vt = v + bt + β

∫ t
0 Vsds + ς

∫ t
0

√
VsdB

1
s

Yt = y − 1
2

∫ t
0 Vsds +

∫ t
0

√
VsdB

2
s ,

where

- β, ς ∈ R, b ∈ R≥0,

- B = (B1, B2) is a Brownian motion in R2 with correlation .
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Approximation of the square root process

I Exact simulation
I high computation time
I need the knowledge of the exact distribution

I Euler scheme
I not well defined

I NV splitting schemes [Ninomiya and Victoir, 2008]
I do not rely on the specific model
I high order convergence scheme
I convergence holds under restrictions on the parameters

I Alfonsi scheme [Alfonsi, 2010]
I extension of the NV schemes without restriction on the

parameters
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Convergence of weak schemes (see [Alfonsi, 2010])

The space C∞pol(D)

C∞pol(D) =
{
f ∈ C∞(D), for all α ∈ Nd ∃Cα > 0, ηα ∈ N |

for all x ∈ D |∂αf (x)| ≤ Cα(1 + |x |ηα)
}
.

Given f ∈ C∞pol there exists K(x, T ) > 0 such that∣∣∣Ex[f (XT )
]
− E

[
f (X̂xtN )

]∣∣∣ ≤ K(x, T )hν

if...
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Moment condition

i) for all h ∈ (0, h0) and α ∈ N there exists a constant Cα such

that

E
[
|X̂xh |α

]
≤ |x |α(1 + Cα)h + Cαh ,

Short time approximation

ii) for all h ∈ (0, h0) there exist two constants C,E > 0 such

that ∣∣∣Ex[f (Xh)
]
− E

[
f (X̂xh )

]∣∣∣ ≤ Chν+1(1 + |x |E) ,



Regularity Results for Degenerate Kolmogorov Equation of Affine Type

Introduction and motivations

Regularity of the Kolmogorov equation

iii) the function u(t, x) := Ex
[
f (Xt)

]
is well defined for

(t, x) ∈ [0, T ]× R≥0, is a smooth solution of

∂tu(t, x) = Au(t, x) such that, for all α ∈ Nd+1 multi–index

it holds

for all (t, x) ∈ [0, T ]× R≥0, |∂α(t,x)u(t, x)| ≤ K(1 + |x |η) ,

where K and η are positive constants depending on the time

horizon T and the order of derivative α.
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Question: When is iii) satisfied?

[Talay and Tubaro, 1990] If Xt = x +
∫ t

0 b(Xs)ds +
∫ t

0 σ(Xs)dBs ,

with b, σ ∈ C∞pol.

[Alfonsi, 2005] For the CIR model.

[G. 2014] For affine processes
I Lévy processes
I The Heston model
I The Bates model
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Affine processes

Examples and definitions

Examples of affine processes 1

Lévy processes

Yt =y + µt + σBt +

∫ t

0

∫
ξ1{|ξ|≤1}(J

Y (dξ, ds)−m(dξ)ds)

+

∫ t

0

∫
ξ1{|ξ|>1}J

Y (dξ, ds)

where (µ,α,m) is a Lévy triplet in Rn, with α = σσ>.

Ey
[
e〈u,Yt〉

]
= etη(u)+〈y,u〉, u ∈ iRn .
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Examples and definitions

Examples of affine processes 2

Heston model{
Vt = v + bt + β

∫ t
0 Vsds + ς

∫ t
0

√
VsdB

1
s

Yt = y − 1
2

∫ t
0 Vsds +

∫ t
0

√
VsdB

2
s ,

where

- β, ς ∈ R, b ∈ R≥0,

- B = (B1, B2) is a Brownian motion in R2 with correlation .

E(v,y)
[
eu1Vt+u2Yt

]
= eφ(t,u1,u2)+vψ(t,u1,u2)+yu2 , (u1, u2) ∈ iR2 .
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Examples and definitions

Examples of affine processes 3

Bates model{
Vt = v + bt + β

∫ t
0 Vsds + ς

∫ t
0

√
VsdB

1
s

Yt = y − 1
2

∫ t
0 Vsds +

∫ t
0

√
VsdB

2
s + Jt ,

where

- J is a compound Poisson process

E(v,y)
[
eu1Vt+u2Yt

]
= eφ(t,u1,u2)+vψ(t,u1,u2)+yu2 , (u1, u2) ∈ iR2 .
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Examples and definitions

In the above examples:

V stochastic variance process in Rm≥0,

Y (discounted) log–price process in Rn,

and

I X := (V, Y ) is a time homogeneous Markov process in

D := Rm≥0 × Rn,

I there exist functions φ : R≥0 × U → C and

Ψ : R≥0 × U → Cd such that

E(v,y)
[
e〈u1,Vt〉+〈u2,Yt〉

]
= eφ(t,u1,u2)+〈v,Ψ(t,u1,u2)〉+〈y,u2〉,

for u = (u1, u2) ∈ U , where U = iRm+n.
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Affine processes

Examples and definitions

Let

(Ω, (Xt)t≥0, (Ft)t≥0, (pt)t≥0, (Px)x∈D)

be a time homogeneous Markov process. The process X is said to

be an affine process if it satisfies the following properties:

I for every t ≥ 0 and x ∈ D, lims→t ps(x, ·) = pt(x, ·) weakly,

I there exist functions φ : R≥0 × U → C and

Ψ : R≥0 × U → Cd such that

Ex
[
e〈u,Xt〉

]
=

∫
D

e〈u,ξ〉pt(x, dξ) = eφ(t,u)+〈x,Ψ(t,u)〉,

for all x ∈ D and (t, u) ∈ R≥0 × U , where U = Cm≤0 × iRn.
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Affine processes

Two key properties

Assumption (A)

I X is conservative.

I There exists a function Ψ : R≥0 × U → Cd such that

Ex
[
e〈u,Xt〉

]
=

∫
D

e〈u,ξ〉pt(x, dξ) = e〈x,Ψ(t,u)〉.

for all x ∈ D and (t, u) ∈ R≥0 × U .

I For all y ∈ Rd and x ∈ D,

Ex
[
e〈y,XT 〉

]
<∞

for some fixed T > 0.
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Affine processes

Two key properties

AP as polynomial processes

Pη vector space of polynomials up to degree η ≥ 0

Pη :=

Rd 3 x 7→
η∑
|k|=0

αkx
k
∣∣∣ αk ∈ R


Theorem 2.14 in [Cuchiero et al., 2008]

Under the Assumption (A), X is a a polynomial process, i.e. for

all η ∈ N and f ∈ Pη

x 7→ Ex
[
f (Xt)

]
∈ Pη, for all t ≥ 0 .
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Affine processes

Two key properties

AP from the perspective of path-space valued LP

Proposition 4.1. in [G., Teichmann, 2014]

For each fixed t > 0 and x ∈ D, there exists a process (L
(t,x)
s )s≥0

such that:

1. L
(t,x)
0 = 0,

2. for every 0 ≤ s1 ≤ s2 <∞, the increment L
(t,x)
s2
− L(t,x)

s1
is

independent of the family (L
(t,x)
s )s∈[0,s1] and it is distributed

as X
(s2−s1)x
t ,

3. it is stochastically continuous.
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Two key properties

A different perspective

Ex
[
euXt

]
= ex

u
1−2ut = E

[
euL

(t,x)
1

]

0
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1

0
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1
0

0.5

1

1.5

2

2.5

t ∈ (0,1]

Representing Levy processes for Xt = x+
∫ t
0

√
2Xsds

sx,s ∈ [0,1]
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The Result

Regularity on C∞
pol

The result

Theorem [G., 2014]

Let f ∈ C∞pol. Then, under the Assumption (A) the function

u : R≥0 ×D → R defined by u(t, x) = Ex
[
f (Xt)

]
is smooth, with

all derivatives satisfying the following property:

for all (t, x) ∈ [0, T ]×D, |∂α(t,x)u(t, x)| ≤ Kα(T )(1 + |x |ηα(T )) ,

where Kα(T ) and ηα(T ) are positive constants depending on the

time horizon T and the order of derivative α.
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Sketch of the proof

Dissect the theorem

part 1 t 7→ Pt f (x) is differentiable for all x ∈ D.
↪→ Use iterated Dynkin formula.

part 2 x 7→ Pt f (x) is differentiable.

↪→ Do a time-space shift.

part 3 (t, x) 7→ Pt f (x) is differentiable with controlled

growth.
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Sketch of the proof

Theorem: Regularity in time

Under the Assumption (A) it holds

(i) for any f ∈ C∞pol, Pt f solves the Kolmogorov’s equation

∂tu(t, x) = Au(t, x) ,

u(0, x) = f (x) ,

for (t, x) ∈ [0, T ]×D,
(ii) for any f ∈ C∞pol and ν ∈ N the following expansion of the

transition semigroup holds for (t, x) ∈ [0, T ]×D :

Ex
[
f (Xt)

]
= f (x) +

ν∑
k=1

tk

k!
Ak f (x) +Rνf (x, t),

where Rνf (x, t) is a remainder of order O(tν+1).
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The Result

Sketch of the proof

Regularity in space

step 1 Consider the decomposition

Xx+hxi law= Xx + X̃hxi , h > 0, i = 1, . . . , d,

where X̃hxi is an independent copy of the process X

starting from hxi .

step 2 For fixed (t, x) ∈ R≥0 ×D, X
x+hxi
t has the same

distribution as the distribution of the Lévy process

L(t,xi ) at time h starting from the initial random

position Xxt .
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