Lamperti transform for multi-type CBI

Nicoletta Gabrielli (based on a joint work with J. Teichmann)

University of Zürich Department of Banking and Finance

nicoletta.gabrielli@bf.uzh.ch

October 23, 2014

Structure of the talk

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi–type CBI

- Definitions
- Some additional results

3 Lamperti transform for multi–type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Outline

Introduction

• Real valued CB and Lamperti transform

• Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Branching processes

Let

$$(\Omega,(X_t)_{t\geq 0}$$
 , $(\mathcal{F}^{
atural}_t)_{t\geq 0}$, $(\mathbb{P}^{x})_{x\in\mathbb{R}_{\geq 0}})$

be a time homogeneous Markov process. The process X is said to be an branching process if it satisfies the following property:

Branching property

For any $t \ge 0$ and $x_1, x_2 \in \mathbb{R}_{\ge 0}$, the law of X_t under $\mathbb{P}^{x_1+x_2}$ is the same as the law of $X_t^{(1)} + X_t^{(2)}$, where each $X^{(i)}$ has the same distribution as X under \mathbb{P}^{x_i} , for i = 1, 2.

Fourier–Laplace transform characterization

 \blacksquare There exists a function $\Psi:\mathbb{R}_{>0}\times\mathbb{C}_{\leq 0}\to\mathbb{C}$ such that

$$\mathbb{E}^{\mathsf{x}}\left[e^{u\mathsf{X}_{t}}\right]=e^{\mathsf{x}\Psi(t,u)},$$

for all $x \in \mathbb{R}_{\geq 0}$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathbb{C}_{\leq 0}$.

 \blacksquare On the set $\mathcal{Q}=\mathbb{R}_{\geq 0}\times \mathbb{C}_{\leq 0}$, the function Ψ satisfies the equation

$$\partial_t \Psi(t, u) = R(\Psi(t, u)), \quad \Psi(0, u) = u.$$

The branching mechanism

The function R has the following Lévy-Khintchine form

$$R(u) = \beta u + \frac{1}{2}u^2 \alpha + \int_0^\infty \left(e^{u\xi} - 1 - u\xi \mathbb{1}_{\{|\xi| \le 1\}}\right) M(d\xi),$$

where $\beta \in \mathbb{R}$, $\alpha \ge 0$ and M is a Lévy measure with support in $\mathbb{R}_{>0}$.

Lévy processes

A time homogeneous Markov process Z is a Lévy process if the following three conditions are satisfied:

L1) $Z_0 = 0 \mathbb{P}$ -a.s.

L2) *Z* has independent and stationary increments, i.e. for all $n \in \mathbb{N}$ and $0 \le t_0 < t_1 < \ldots < t_{n+1} < \infty$

(independence) the random variables $\{Z_{t_{j+1}} - Z_{t_j}\}_{j=0,...,n}$ are independent,

(stationarity) the distribution of $Z_{t_{j+1}} - Z_{t_j}$ coincides with the distribution of $Z_{(t_{j+1}-t_j)}$,

L3) (stochastic continuity) for each a > 0 and $s \ge 0$, $\lim_{t\to s} \mathbb{P}(|Z_t - Z_s| > a) = 0$.

Relation with infinitely divisible distributions

- If Z is a Lévy process, then, for any $t \ge 0$, the random variable Z_t is infinitely divisible.
- The Fourier transform of a Lévy process takes the form:

$$\begin{split} \mathbb{E}^{0}\Big[e^{\langle u, Z_{t}\rangle}\Big] &= e^{t\eta(u)}, \quad u \in \mathrm{i}\mathbb{R} \\ \eta(u) &= \beta u + \frac{1}{2}u^{2}\alpha + \int \left(e^{u\xi} - 1 - u\xi\mathbb{1}_{\{|\xi| \le 1\}}\right) M(d\xi), \end{split}$$

where $\beta \in \mathbb{R}$, $\alpha \ge 0$ and *M* is a Lévy measure in \mathbb{R} .

The Fourier transform can be extended in the complex domain and the resulting Fourier–Laplace transform is well defined in

$$\mathcal{U}:=\left\{u\in\mathbb{C}\mid\eta(\mathcal{R}e(u))<\infty\right\}.$$

Lamperti transform

Theorem [Lamperti, 1967]

Let Z be a Lévy process with no negative jumps with Lévy exponent R, i.e.

$$\mathbb{E}^0\left[e^{uZ_t}\right] = e^{tR(u)}, \qquad u \in \mathcal{U}.$$

Define, for $t \ge 0$

$$X_t = x + Z_{\theta_t \wedge \tau_0^-} \quad \theta_t := \inf \left\{ s > 0 \mid \int_0^s \frac{dr}{Z_r} > t \right\}$$

Then X is a CB process with branching mechanism R.

Lamperti transform

Theorem 2 in [Caballero et al., 2013]

Let Z be a Lévy process with no negative jumps with Lévy exponent R, i.e.

$$\mathbb{E}^0\left[e^{uZ_t}\right] = e^{tR(u)}, \qquad u \in \mathcal{U}.$$

The time-change equation

$$X_t = x + Z_{\int_0^t X_r dr}$$

admits a unique solution, which is a CB process with branching mechanism R.

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi–type CBI

- Definitions
- Some additional results

Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Add immigration

A CBI-process with branching mechanism R and immigration mechanism F is a Markov process Z taking values in $\mathbb{R}_{>0}$ satisfying

• there exist functions $\phi : \mathbb{R}_{\geq 0} \times \mathcal{U} \to \mathbb{C}$ and $\Psi : \mathbb{R}_{\geq 0} \times \mathcal{U} \to \mathbb{C}$ such that

$$\mathbb{E}^{\mathsf{X}}\left[e^{u\mathsf{X}_{t}}\right] = e^{\phi(t,u) + \mathsf{X}\Psi(t,u)},$$

for all $x \in \mathbb{R}_{\geq 0}$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathcal{U}$.

• On the set $Q = \mathbb{R}_{\geq 0} \times U$, the functions ϕ and Ψ satisfy the following system :

$$\partial_t \phi(t, u) = F(\Psi(t, u)), \quad \phi(0, u) = 0, \\ \partial_t \Psi(t, u) = R(\Psi(t, u)), \quad \Psi(0, u) = u.$$

Add immigration

The immigration mechanism

The function F has the following Lévy-Khintchine form

$$F(u) = bu + \int_0^\infty \left(e^{u\xi} - 1\right) m(d\xi),$$

with $b \ge 0$ and m is a Lévy measure on $\mathbb{R}_{\ge 0}$ such that $\int (1 \land \xi) m(d\xi) < \infty$.

Lamperti transform for CBI

Theorem 2 in [Caballero et al., 2013]

Let $Z^{(1)}$ be a Lévy process with no negative jumps and $Z^{(0)}$ an independent subordinator such that

$$\mathbb{E}^{0}\left[e^{uZ_{t}^{(1)}}\right] = e^{tR(u)} \text{ and } \mathbb{E}^{0}\left[e^{uZ_{t}^{(0)}}\right] = e^{tF(u)}, \quad u \in \mathcal{U}.$$

The time-change equation

$$X_t = x + Z_t^{(0)} + Z_{\int_0^t X_r dr}^{(1)}$$

admits a unique solution, which is a CBI process with branching mechanism R and immigration mechanism F.

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Definition

Let

$$(\Omega, (X_t)_{t\geq 0}, (\mathcal{F}^{\natural}_t)_{t\geq 0}, (\mathbb{P}^{\scriptscriptstyle X})_{\scriptscriptstyle X\in\mathbb{R}^m_{\geq 0}})$$

be a time homogeneous Markov process. The process X is said to be a multi-type CBI if it satisfies the following property:

See [Duffie et al., 2003, Barczy et al., 2014]

There exist functions $\phi: \mathbb{R}_{>0} \times \mathcal{U} \to \mathbb{C}$ and $\Psi: \mathbb{R}_{>0} \times \mathcal{U} \to \mathbb{C}^m$ such that

$$\mathbb{E}^{x}\left[e^{\langle u,X_{t}\rangle}\right]=e^{\phi(t,u)+\langle x,\Psi(t,u)\rangle},$$

for all $x \in \mathbb{R}^m_{>0}$ and $(t, u) \in \mathbb{R}_{>0} \times \mathcal{U}$, with $\mathcal{U} = \mathbb{C}^m_{<0}$.

Generalized Riccati equations

On the set $Q = \mathbb{R}_{\geq 0} \times U$, the functions ϕ and Ψ satisfy the following system of generalized Riccati equations:

$$\begin{aligned} \partial_t \phi(t, u) &= F(\Psi(t, u)), \quad \phi(0, u) = 0, \\ \partial_t \Psi(t, u) &= R(\Psi(t, u)), \quad \Psi(0, u) = u. \end{aligned}$$

Lévy–Khintchine form for the vector fields

The functions F and R_k , for each k = 1, ..., m, have the following Lévy-Khintchine form

$$F(u) = \langle b, u \rangle + \int_{\mathbb{R}_{\geq 0}^{m} \setminus \{0\}} \left(e^{\langle u, \xi \rangle} - 1 \right) m(d\xi),$$

$$R_{k}(u) = \langle \beta_{k}, u \rangle + \frac{1}{2} u_{k}^{2} \alpha_{k} + \int_{\mathbb{R}_{\geq 0}^{m} \setminus \{0\}} \left(e^{\langle u, \xi \rangle} - 1 - \mathbf{u}_{k} \boldsymbol{\xi}_{k} \mathbb{1}_{\{|\xi| \leq 1\}} \right) M_{k}(d\xi).$$

Admissible parameters

The set of parameters satisfies the following restrictions

•
$$b, \beta_i \in \mathbb{R}^m, i = 1, \ldots, m,$$

•
$$\alpha_i \geq 0$$
,

• $m, M_i, i = 1, \ldots, m$, Lévy measures.

drift	
$b \in \mathbb{R}^m_{>0}$,	
$(eta_i)_k \stackrel{-}{\geq} 0$,	for all $i = 1, \ldots, m$ and $k \neq i$,
jumps	
$\operatorname{supp} m \subseteq \mathbb{R}^m_{>0},$	and $\int \left(\xi \wedge 1 ight) m(d\xi) < \infty$,
$\operatorname{supp} M_i \subseteq \mathbb{R}^m_{>0}$,	for all $i = 1, \ldots, m$ and
_ *	$\int \left(\left((\xi)_{-i} + \xi_i ^2 \right) \wedge 1 \right) M_i(d\xi) < \infty$.

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

• It is possible to define m + 1 independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^m with Lévy exponents F, R_1, \ldots, R_m .

- It is possible to define m + 1 independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^m with Lévy exponents F, R_1, \ldots, R_m .
- In [Kallsen, 2006] it has been proved that the time change equation

$$X_t = x + Z_t^{(0)} + \sum_{k=1}^m Z_{\int_0^t X_s^{(k)} ds}^{(k)}, \quad t \ge 0, \qquad (*)$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that (*) holds in distribution.

- It is possible to define m + 1 independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^m with Lévy exponents F, R_1, \ldots, R_m .
- In [Kallsen, 2006] it has been proved that the time change equation

$$X_t = x + Z_t^{(0)} + \sum_{k=1}^m Z_{\int_0^t X_s^{(k)} ds}^{(k)}, \quad t \ge 0, \qquad (*)$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that (*) holds in distribution.

Moreover X has the distribution of a multi-type CBI with immigration mechanism F and branching mechanism (R₁,..., R_m).

- It is possible to define m + 1 independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^m with Lévy exponents F, R_1, \ldots, R_m .
- In [Kallsen, 2006] it has been proved that the time change equation

$$X_t = x + Z_t^{(0)} + \sum_{k=1}^m Z_{\int_0^t X_s^{(k)} ds}^{(k)}, \quad t \ge 0, \qquad (*)$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that (*) holds in distribution.

Moreover X has the distribution of a multi-type CBI with immigration mechanism F and branching mechanism (R₁,..., R_m).

Does there exist a pathwise solution of (*)?

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

3 Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Results for multi-type CB

Theorem [G. and Teichmann, 2014]

Let $Z^{(1)}, \ldots, Z^{(m)}$ be independent \mathbb{R}^m -valued Lévy processes with

$$\mathbb{E}^{0}\left[e^{\left\langle u,Z_{t}^{(k)}\right\rangle}\right]=e^{tR_{k}(u)}, \qquad u\in\mathcal{U},$$

where each R_k is of LK form with triplets given by a set of admissible parameters. Then the time-change equation

$$X_t = x + \sum_{k=1}^m Z^{(k)}_{\int_0^t X^{(k)}_s ds} \quad t \ge 0$$
 ,

admits a unique solution, which is a multi-type CB process with respect to the **time-changed filtration**.

Multiparameter time-change filtration

Define
$$Z = (Z_{1}^{(1)}, \ldots, Z_{m}^{(1)}, \ldots, Z_{1}^{(m)}, \ldots, Z_{m}^{(m)}) =: (Z^{(1)}, \ldots, Z^{(m^{2})}).$$
For all s = (s₁, ..., s_{m²}) ∈ $\mathbb{R}_{\geq 0}^{m^{2}}$

$$\mathcal{G}_{\underline{s}}^{\natural} := \sigma \left(\{ Z_{t_{h}}^{(h)}, t_{h} \leq s_{h}, \text{ for } h = 1, \ldots, m^{2} \} \right).$$
Complete it by $\mathcal{G}_{\underline{s}} = \bigcap_{n \in \mathbb{N}} \mathcal{G}_{\underline{s}^{(n)} + \frac{1}{n}}^{\natural} \lor \sigma(\mathcal{N}).$

Definition

A random variable $\underline{\tau} = (\tau_1, \ldots, \tau_{m^2}) \in \mathbb{R}^{m^2}_{\geq 0}$ is a $(\mathcal{G}_{\underline{s}})$ -stopping time if

$$\{\underline{\tau} \leq \underline{s}\} := \{\tau_1 \leq s_1, \dots, \tau_{m^2} \leq s_{m^2}\} \in \mathcal{G}_{\underline{s}}, \text{ for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m^2}.$$

If $\underline{\tau}$ is a stopping time,

$$\mathcal{G}_{\underline{\tau}} := \{ B \in \mathcal{G} \mid B \cap \{ \underline{\tau} \leq \underline{s} \} \in \mathcal{G}_{\underline{s}} \text{ for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m^2} \}.$$

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

3 Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Extension to multi-type CBI

- Let F be an immigration mechanism and $R = (R_1, ..., R_m)$ a branching mechanism.
- Let Z⁽⁰⁾ Lévy process with exponent F and Z⁽ⁱ⁾ Lévy process with exponent R_i.
- Define, for $k = 0, \ldots, m$,

$$\overline{Z}^{(k)} := (\overline{Z}_0^{(k)}, \underbrace{\overline{Z}_1^{(k)}, \dots, \overline{Z}_m^{(k)}}_{m \text{ coordinates}}) := (0, \underbrace{Z_0^{(k)}}_{m \text{ coordinates}}).$$

Given y = (1, x) with $x \in \mathbb{R}^{m}_{\geq 0}$, the previous result gives pathwise existence of

$$Y_t = y + \sum_{k=0}^{m} \overline{Z}_{\int_0^t Y_s^{(i)} ds}^{(k)}.$$

• It holds Y = (1, X) where X is a CBI(F, R).

Outline

Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI

What is a multi-type CBI

- Definitions
- Some additional results

3 Lamperti transform for multi-type CBI

- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

The one dimensional case

Question: Given a Lévy process Z taking values in \mathbb{R} , is there a solution of

$$X_t = x + Z_{\int_0^t X_s ds}$$
?

For the one dimensional case see also [Caballero et al., 2013].

An ODE point of view in $\mathbb{R}_{>0}$

Introduce

$$\tau(t):=\int_0^t X_s ds\,.$$

Does there exist a solution $\tau \in \mathbb{R}_{\geq 0}$ of

$$\begin{cases} \dot{\tau}(t) = x + Z(\tau(t)) \\ \tau(0) = 0 \end{cases}$$
?

An ODE point of view in $\mathbb{R}^m_{>0}$

Introduce

Does there exist a solution $\underline{\tau} \in \mathbb{R}^m_{\geq 0}$ of

$$\begin{cases} \underline{\dot{\tau}}(t) = x + \mathcal{Z}(\underline{\tau}(t)), \\ \underline{\tau}(0) = 0. \end{cases}$$
?

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$\begin{cases} \dot{\underline{\tau}}((t_0, \tau_0, x); t) = (x + \mathcal{Z})(\underline{\tau}((t_0, \tau_0, x); t)) \\ \underline{\tau}((t_0, \tau_0, x); t_0) = \tau_0 , \end{cases}$$

for $t \geq t_0$ and $\tau_0 \in \mathbb{R}^m_{>0}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$\left\{ egin{array}{ll} \dot{\underline{ au}}((t_0, au_0,\mathbf{x});t) = (\mathbf{x}+\mathcal{Z})(\underline{ au}((t_0, au_0,\mathbf{x});t)), \ \underline{ au}((t_0, au_0,\mathbf{x});t_0) = au_0\,, \end{array}
ight.$$

for $t \geq t_0$ and $\tau_0 \in \mathbb{R}^m_{>0}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$\begin{cases} \underline{\dot{\tau}}((\mathbf{t}_0, \boldsymbol{\tau}_0, x); t) = (x + \mathcal{Z})(\underline{\tau}((\mathbf{t}_0, \boldsymbol{\tau}_0, x); t)), \\ \underline{\tau}((\mathbf{t}_0, \boldsymbol{\tau}_0, x); \mathbf{t}_0) = \boldsymbol{\tau}_0, \end{cases}$$

for $t \geq t_0$ and $\tau_0 \in \mathbb{R}^m_{>0}$.

Decomposition of ${\mathcal Z}$

The Lévy–Itô decomposition together with the **canonical form** of the admissible parameters give

$$Z_{t}^{(i)} = \beta_{i}t + \sigma_{i}B_{t}^{(i)} + \int_{0}^{t}\int \xi \mathbb{1}_{\{|\xi|>1\}}\mathcal{J}^{(i)}(d\xi, ds) \\ + \int_{0}^{t}\int \xi \mathbb{1}_{\{|\xi|\leq1\}}(\mathcal{J}^{(i)}(d\xi, ds) - M_{i}(d\xi)ds)$$

where $\sigma_i = \sqrt{\alpha_i}$, $B^{(i)}$ is a process in \mathbb{R}^m which evolves only along the the *i*-th coordinate as Brownian motion and $\mathcal{J}^{(i)}$ is the jump measure of the process $Z^{(i)}$.

Decompose

$$Z^{(i)} =: \widetilde{Z}^{(i)} + \widetilde{Z}^{(i)}$$

where $\widetilde{Z}^{(i)}$ and $\widetilde{Z}^{(i)}$ are two stochastic processes on \mathbb{R}^m defined by

$$\widetilde{Z}_{i}^{(i)}(t) := (\beta_{i})_{i}t + \sigma_{i}B^{(i)}(t) + \int_{0}^{t} \int \xi_{i} \mathbb{1}_{\{|\xi| > 1\}} \mathcal{J}^{(i)}(d\xi, ds) + \int_{0}^{t} \int \xi_{i} \mathbb{1}_{\{|\xi| \le 1\}} \widetilde{\mathcal{J}}^{(i)}(d\xi, ds)$$

$$Z_k^{(i)}(t) := 0, \qquad \qquad \text{for } k \neq i,$$

$$\begin{split} \widetilde{Z}^{(i)}(t) &:= \quad \widetilde{eta}_i t \quad + \int_0^t \int (\xi - \xi_i e_i) \mathbb{1}_{\{|\xi| > 1\}} \mathcal{J}^{(i)}(d\xi, ds) \ &+ \int_0^t \int (\xi - \xi_i e_i) \mathbb{1}_{\{|\xi| \le 1\}} \widetilde{\mathcal{J}}^{(i)}(d\xi, ds) \,. \end{split}$$

where $\overset{\sim}{\beta}_{i} = \beta_{i} - e_{i}(\beta_{i})_{i}$ and $\widetilde{\mathcal{J}}^{(i)}$ is the compensated jump measure.

Approximation of the jump part

Introduce, for all $\underline{s} \in \mathbb{R}^m_{>0}$,

$$\widetilde{\mathcal{Z}}(\underline{s}) := \sum_{i=1}^{m} \widetilde{Z}^{(i)}(s_i), \quad \widetilde{\mathcal{Z}}(\underline{s}) := \sum_{i=1}^{m} \widetilde{Z}^{(i)}(s_i).$$

Fix $M \in \mathbb{N}$ and consider the partition

$$\mathcal{T}_M := \left\{ \begin{array}{ll} \displaystyle \frac{k}{2^M}, & k \geq 0 \end{array}
ight\} \, .$$

• Define the following approximations on the partition \mathcal{T}_M :

$$\uparrow \widetilde{Z}_{t}^{(i, M)} := \sum_{k=0}^{\infty} \widetilde{Z}_{k/2^{M}}^{(i)} \mathbb{1}_{\left[\frac{k}{2^{M}}, \frac{k+1}{2^{M}}\right]}(t),$$
$$\uparrow \widetilde{Z}^{(M)}(\underline{s}) := \sum_{i=1}^{m} \uparrow \widetilde{Z}^{(i, M)}(s_{i}),$$

The proof

Set

$$\begin{aligned} (t_0, \tau_0, x) &:= (0, 0, x), \\ &\overleftarrow{\sigma} &:= (0, \dots, 0), \\ &\overrightarrow{\sigma} &:= (\sigma_1^{(1,M)}, \dots, \sigma_1^{(i,M)}, \dots, \sigma_1^{(m,M)}) \end{aligned}$$

• Solve

$$\begin{cases} \underline{\dot{\tau}}((0,0,x);t) = (x + \widetilde{\mathcal{Z}})(\underline{\tau}((0,0,x);t)), \\ \underline{\tau}((0,0,x);t_0) = \tau_0, \end{cases}$$

for $t \in [0, t_1]$ where

$$t_1 := \sup\{t > 0 \mid \underline{\tau}((t_0, \tau_0, x); t) \leq \overrightarrow{\sigma}\}.$$

Remark There might be one or more indices i^* , where equality holds. Collect them in a set $I^* \subseteq \{1, \ldots, m\}$.

N. Gabrielli (UZH)

Update the values

$$\pi_{I^*}\overleftarrow{\sigma} := \pi_{I^*}\overrightarrow{\sigma}, \\ \pi_{I^*}\overrightarrow{\sigma} := \pi_{I^*}\overrightarrow{\sigma}_{++},$$

where $\overrightarrow{\sigma}_{++}$ contains the next jumps of $\uparrow \widetilde{Z}^{(i, M)}$ for all $i \in I^*$ after $\overrightarrow{\sigma}_i$.

Define

$$\begin{aligned} \tau_1 &:= \underline{\tau}((t_0, \tau_0, x); t_1) \\ x_1 &:= x + \Delta^{\uparrow} \overset{\sim}{\mathcal{Z}}^{(M)}(\overleftarrow{\sigma}). \end{aligned}$$

Solve

$$\begin{cases} \underline{\dot{\tau}}((t_1, \tau_1, x_1); t) = (x_1 + \mathcal{Z})(\underline{\tau}((t_1, \tau_1, x_1); t)), \\ \underline{\tau}((t_1, \tau_1, x_1); t_1) = \tau_1, \end{cases}$$

for $t \in [t_1, t_2]$ where

$$t_2 := \sup\{t > t_1 \mid \underline{\tau}((t_1, \tau_1, x_1); t) \leq \overrightarrow{\sigma}\}.$$

• Define iteratively, for all $n \ge 1$

$$\begin{aligned} t_{n+1} &:= \sup\{t > 0 \mid \underline{\tau}((t_n, \tau_n, x_n); t) \leq \overrightarrow{\sigma}\}, \\ \tau_{n+1} &:= \underline{\tau}((t_n, \tau_n, x_n); t_{n+1}), \\ x_{n+1} &:= x_n + \Delta^{\uparrow} \widetilde{\mathcal{Z}}^{(M)}(\overleftarrow{\sigma}), \end{aligned}$$

where, at each step $\overleftarrow{\sigma}$ and $\overrightarrow{\sigma}$ are updated.

Solution of the approximated problem

Theorem

There exists a solution of

$$\begin{cases} \underline{\dot{\tau}}^{(M)}((t_0, \tau_0, x); t) = (x + \widetilde{\mathcal{Z}} + \uparrow \widetilde{\mathcal{Z}}^{(M)})(\underline{\tau}^{(M)}((t_0, \tau_0, x); t)), \\ \underline{\tau}^{(M)}((t_0, \tau_0, x); t_0) = 0. \end{cases}$$

Moreover it holds

$$\lim_{M\to\infty}\underline{\tau}^{(M)}((t_0,\tau_0,x);t)=\underline{\tau}((t_0,\tau_0,x);t)$$

where $\underline{\tau}$ solves

$$\begin{cases} \underline{\dot{\tau}}((t_0, \tau_0, x); t) = (x + \mathcal{Z})(\underline{\tau}((t_0, \tau_0, x); t)), \\ \underline{\tau}((t_0, \tau_0, x); t_0) = \tau_0. \end{cases}$$

Thank you for your attention

Bibliography I

- Barczy, M., Li, Z., and Pap, G. (2014).

Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration.

Caballero, M. E., Pérez Garmendia, J. L., and Uribe Bravo, G. (2013).

A Lamperti-type representation of continuous-state branching processes with immigration.

- Duffie, D., Filipović, D., and Schachermayer, W. (2003).
 Affine processes and applications in finance.
- G., N. and Teichmann, J. (2014).

Pathwise construction of affine processes.

🖬 Kallsen, J. (2006).

A didactic note on affine stochastic volatility models.