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Branching processes

Let

(Ω, (Xt)t≥0, (F \t )t≥0, (Px )x∈R≥0)

be a time homogeneous Markov process. The process X is said to be an

branching process if it satisfies the following property:

Branching property

For any t ≥ 0 and x1, x2 ∈ R≥0, the law of Xt under Px1+x2 is the same

as the law of X
(1)
t + X

(2)
t , where each X (i) has the same distribution as

X under Pxi , for i = 1, 2.
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Fourier–Laplace transform characterization

There exists a function Ψ : R≥0 × C≤0 → C such that

Ex
[
euXt

]
= exΨ(t,u),

for all x ∈ R≥0 and (t, u) ∈ R≥0 × C≤0.
On the set Q = R≥0 × C≤0 , the function Ψ satisfies the equation

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u .

The branching mechanism

The function R has the following Lévy-Khintchine form

R(u) = βu +
1

2
u2α+

∫ ∞
0

(
euξ − 1− uξ1{|ξ|≤1}

)
M(dξ) ,

where β ∈ R, α ≥ 0 and M is a Lévy measure with support in R≥0.
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Lévy processes

A time homogeneous Markov process Z is a Lévy process if the following

three conditions are satisfied:

L1) Z0 = 0 P-a.s.

L2) Z has independent and stationary increments, i.e. for all n ∈ N and

0 ≤ t0 < t1 < . . . < tn+1 <∞
(independence) the random variables {Ztj+1 − Ztj}j=0,...,n are

independent,

(stationarity) the distribution of Ztj+1 − Ztj coincides with the

distribution of Z(tj+1−tj ),

L3) (stochastic continuity) for each a > 0 and s ≥ 0,

limt→s P(|Zt − Zs | > a) = 0 .
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Relation with infinitely divisible distributions

If Z is a Lévy process, then, for any t ≥ 0, the random variable Zt is

infinitely divisible.

The Fourier transform of a Lévy process takes the form:

E0
[
e〈u,Zt〉

]
= etη(u), u ∈ iR

η(u) = βu +
1

2
u2α+

∫ (
euξ − 1− uξ1{|ξ|≤1}

)
M(dξ),

where β ∈ R, α ≥ 0 and M is a Lévy measure in R.

The Fourier transform can be extended in the complex domain and

the resulting Fourier–Laplace transform is well defined in

U := {u ∈ C | η(Re(u)) <∞} .
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Lamperti transform

Theorem [Lamperti, 1967]

Let Z be a Lévy process with no negative jumps with Lévy exponent R,

i.e.

E0
[
euZt

]
= etR(u), u ∈ U .

Define, for t ≥ 0

Xt = x + Z
θt∧τ−0

θt := inf

{
s > 0 |

∫ s
0

dr

Zr
> t

}
.

Then X is a CB process with branching mechanism R.
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Lamperti transform

Theorem 2 in [Caballero et al., 2013]

Let Z be a Lévy process with no negative jumps with Lévy exponent R,

i.e.

E0
[
euZt

]
= etR(u), u ∈ U .

The time–change equation

Xt = x + Z∫ t
0 Xrdr

admits a unique solution, which is a CB process with branching

mechanism R.
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Add immigration

A CBI-process with branching mechanism R and immigration mechanism

F is a Markov process Z taking values in R≥0 satisfying

there exist functions φ : R≥0 × U → C and Ψ : R≥0 × U → C such

that

Ex
[
euXt

]
= eφ(t,u)+xΨ(t,u),

for all x ∈ R≥0 and (t, u) ∈ R≥0 × U .

On the set Q = R≥0 × U , the functions φ and Ψ satisfy the

following system :

∂tφ(t, u) = F (Ψ(t, u)), φ(0, u) = 0,

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u .
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Add immigration

The immigration mechanism

The function F has the following Lévy-Khintchine form

F (u) = bu +

∫ ∞
0

(
euξ − 1

)
m(dξ) ,

with b ≥ 0 and m is a Lévy measure on R≥0 such that∫
(1 ∧ ξ)m(dξ) <∞.
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Lamperti transform for CBI

Theorem 2 in [Caballero et al., 2013]

Let Z (1) be a Lévy process with no negative jumps and Z (0) an

independent subordinator such that

E0
[
euZ

(1)
t

]
= etR(u) and E0

[
euZ

(0)
t

]
= etF (u) , u ∈ U .

The time–change equation

Xt = x + Z
(0)
t + Z

(1)∫ t
0 Xrdr

admits a unique solution, which is a CBI process with branching

mechanism R and immigration mechanism F .
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Definition

Let

(Ω, (Xt)t≥0, (F \t )t≥0, (Px )x∈Rm≥0)

be a time homogeneous Markov process. The process X is said to be a

multi–type CBI if it satisfies the following property:

See [Duffie et al., 2003, Barczy et al., 2014]

There exist functions φ : R≥0×U → C and Ψ : R≥0×U → Cm such that

Ex
[
e〈u,Xt〉

]
= eφ(t,u)+〈x ,Ψ(t,u)〉,

for all x ∈ Rm≥0 and (t, u) ∈ R≥0 × U , with U = Cm≤0.

N. Gabrielli (UZH) October 23, 2014 15 / 38



Generalized Riccati equations

On the set Q = R≥0 × U , the functions φ and Ψ satisfy the following

system of generalized Riccati equations:

∂tφ(t, u) = F (Ψ(t, u)), φ(0, u) = 0,

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u .

Lévy–Khintchine form for the vector fields

The functions F and Rk , for each k = 1, . . . ,m, have the following
Lévy-Khintchine form

F (u) = 〈b, u〉+

∫
Rm≥0\{0}

(
e〈u,ξ〉 − 1

)
m(dξ),

Rk(u) = 〈βk , u〉+
1

2
u2kαk +

∫
Rm≥0\{0}

(
e〈u,ξ〉 − 1− ukξk1{|ξ|≤1}

)
Mk(dξ).
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Admissible parameters

The set of parameters satisfies the following restrictions

b, βi ∈ Rm, i = 1, . . . ,m,

αi ≥ 0,

m,Mi , i = 1, . . . ,m, Lévy measures.

drift

b ∈ Rm≥0,
(βi )k ≥ 0, for all i = 1, . . . ,m and k 6= i ,

jumps

suppm ⊆ Rm≥0, and
∫

(|ξ| ∧ 1)m(dξ) <∞ ,

suppMi ⊆ Rm≥0, for all i = 1, . . . ,m and∫ (
(|(ξ)−i |+ |ξi |2) ∧ 1

)
Mi (dξ) <∞ .
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Remarks

It is possible to define m + 1 independent Lévy processes

Z (0),Z (1), . . . ,Z (m) taking values in Rm with Lévy exponents

F ,R1, . . . ,Rm.

In [Kallsen, 2006] it has been proved that the time change equation

Xt = x + Z
(0)
t +

m∑
k=1

Z
(k)∫ t
0 X

(k)
s ds

, t ≥ 0 , (*)

admits a weak solution, i.e. there exists a probability space

containing two processes (X ,Z ) such that (*) holds in distribution.

Moreover X has the distribution of a multi–type CBI with

immigration mechanism F and branching mechanism (R1, . . . ,Rm).

Does there exist a pathwise solution of (*)?
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F ,R1, . . . ,Rm.

In [Kallsen, 2006] it has been proved that the time change equation

Xt = x + Z
(0)
t +

m∑
k=1

Z
(k)∫ t
0 X

(k)
s ds

, t ≥ 0 , (*)

admits a weak solution, i.e. there exists a probability space

containing two processes (X ,Z ) such that (*) holds in distribution.

Moreover X has the distribution of a multi–type CBI with

immigration mechanism F and branching mechanism (R1, . . . ,Rm).

Does there exist a pathwise solution of (*)?

N. Gabrielli (UZH) October 23, 2014 19 / 38



Remarks

It is possible to define m + 1 independent Lévy processes
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Results for multi–type CB

Theorem [G. and Teichmann, 2014]

Let Z (1), . . . ,Z (m) be independent Rm-valued Lévy processes with

E0
[
e

〈
u,Z

(k)
t

〉]
= etRk (u), u ∈ U ,

where each Rk is of LK form with triplets given by a set of admissible

parameters. Then the time–change equation

Xt = x +

m∑
k=1

Z
(k)∫ t
0 X

(k)
s ds

t ≥ 0 ,

admits a unique solution, which is a multi–type CB process with respect

to the time–changed filtration.
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Multiparameter time–change filtration

Define

Z = (Z
(1)
1 , . . . ,Z

(1)
m , . . . ,Z

(m)
1 , . . . ,Z

(m)
m ) =: (Z (1), . . . ,Z (m2)).

For all s = (s1, . . . , sm2) ∈ Rm
2

≥0

G\s := σ
(
{Z (h)
th
, th ≤ sh, for h = 1, . . . ,m2}

)
.

Complete it by Gs =
⋂
n∈N G

\

s(n)+ 1
n

∨ σ(N ).

Definition

A random variable τ = (τ1, . . . , τm2) ∈ Rm
2

≥0 is a (Gs)-stopping time if

{τ ≤ s} := {τ1 ≤ s1, . . . , τm2 ≤ sm2} ∈ Gs , for all s ∈ Rm2≥0 .

If τ is a stopping time,

Gτ := {B ∈ G | B ∩ {τ ≤ s} ∈ Gs for all s ∈ Rm2≥0} .
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Extension to multi–type CBI

Let F be an immigration mechanism and R = (R1, . . . ,Rm) a

branching mechanism.

Let Z (0) Lévy process with exponent F and Z (i) Lévy process with

exponent Ri .

Define, for k = 0, . . . ,m,

Z
(k)

:=
(
Z

(k)
0 ,Z

(k)
1 , . . . ,Z

(k)
m︸ ︷︷ ︸

m coordinates

)
:=
(

0, Z (k)︸︷︷︸
m coordinates

)
.

Given y = (1, x) with x ∈ Rm≥0, the previous result gives pathwise

existence of

Yt = y +

m∑
k=0

Z
(k)∫ t
0 Y

(i)
s ds

.

It holds Y = (1,X ) where X is a CBI (F ,R).
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The one dimensional case

Question: Given a Lévy process Z taking values in R, is there a

solution of

Xt = x + Z∫ t
0 Xsds

?

For the one dimensional case see also [Caballero et al., 2013].
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An ODE point of view in R≥0

Introduce

τ(t) :=

∫ t
0

Xsds .

Does there exist a solution τ ∈ R≥0 of{
τ̇(t) = x + Z (τ(t))

τ(0) = 0
?
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An ODE point of view in Rm≥0

Introduce

Z : Rm≥0 → Rm

s 7→
m∑
i=1

Z (i)(si) .

Does there exist a solution τ ∈ Rm≥0 of{
τ̇(t) = x + Z(τ(t)) ,

τ(0) = 0 .
?
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Construction of the time–change process

Theorem [G. and Teichmann, 2014]

There exists a solution of{
τ̇((t0, τ0, x); t) = (x + Z)(τ((t0, τ0, x); t)),

τ((t0, τ0, x); t0) = τ0 ,

for t ≥ t0 and τ0 ∈ Rm≥0 .
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Construction of the time–change process

Theorem [G. and Teichmann, 2014]

There exists a solution of{
τ̇((t0, τ 0, x); t) = (x + Z)(τ((t0, τ 0, x); t)),

τ((t0, τ 0, x); t0) = τ 0 ,

for t ≥ t0 and τ0 ∈ Rm≥0 .
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Decomposition of Z

The Lévy–Itô decomposition together with the canonical form of the

admissible parameters give

Z
(i)
t =βi t + σiB

(i)
t +

∫ t
0

∫
ξ1{|ξ|>1}J (i)(dξ, ds)

+

∫ t
0

∫
ξ1{|ξ|≤1}(J (i)(dξ, ds)−Mi(dξ)ds)

where σi =
√
αi , B

(i) is a process in Rm which evolves only along the the

i-th coordinate as Brownian motion and J (i) is the jump measure of the

process Z (i).
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Decompose

Z (i) =:
∼
Z

(i)
+
�
Z

(i)

where
∼
Z

(i)
and

�
Z

(i)
are two stochastic processes on Rm defined by

∼
Z

(i)
i (t) := (βi)i t+σiB

(i)(t) +

∫ t
0

∫
ξi1{|ξ|>1}J (i)(dξ, ds)

+

∫ t
0

∫
ξi1{|ξ|≤1}J̃ (i)(dξ, ds)

∼
Z

(i)
k (t) := 0, for k 6= i ,

�
Z

(i)
(t) :=

�
βi t +

∫ t
0

∫
(ξ − ξiei)1{|ξ|>1}J (i)(dξ, ds)

+

∫ t
0

∫
(ξ − ξiei)1{|ξ|≤1}J̃ (i)(dξ, ds) .

where
�
βi = βi − ei(βi)i and J̃ (i) is the compensated jump measure.
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Approximation of the jump part

Introduce, for all s ∈ Rm≥0,

∼
Z (s) :=

m∑
i=1

∼
Z

(i)
(si),

�
Z (s) :=

m∑
i=1

�
Z

(i)
(si) .

Fix M ∈ N and consider the partition

TM :=

{
k

2M
, k ≥ 0

}
.

Define the following approximations on the partition TM :

↑�Z
(i ,M)
t :=

∞∑
k=0

�
Z

(i)

k/2M
1[ k
2M
, k+1

2M
)(t) ,

↑�Z(M)
(s) :=

m∑
i=1

↑�Z
(i ,M)

(si),
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The proof

Set

(t0, τ0, x) := (0, 0, x),
←−σ := (0, . . . , 0),

−→σ := (σ
(1,M)
1 , . . . , σ

(i ,M)
1 , . . . , σ

(m,M)
1 )

Solve {
τ̇((0, 0, x); t) = (x +

∼
Z )(τ((0, 0, x); t)),

τ((0, 0, x); t0) = τ0 ,

for t ∈ [0, t1] where

t1 := sup{t > 0 | τ((t0, τ0, x); t) ≤ −→σ } .

Remark There might be one or more indices i∗, where equality

holds. Collect them in a set I ∗ ⊆ {1, . . . ,m}.
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Update the values
πI ∗
←−σ := πI ∗

−→σ ,
πI ∗
−→σ := πI ∗

−→σ ++,

where −→σ ++ contains the next jumps of ↑
�
Z

(i ,M)
for all i ∈ I ∗ after

−→σ i .
Define

τ1 := τ((t0, τ0, x); t1)

x1 := x + ∆↑
�
Z(M)

(←−σ ).

Solve {
τ̇((t1, τ1, x1); t) = (x1 +

∼
Z )(τ((t1, τ1, x1); t)),

τ((t1, τ1, x1); t1) = τ1 ,

for t ∈ [t1, t2] where

t2 := sup{t > t1 | τ((t1, τ1, x1); t) ≤ −→σ } .
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Define iteratively, for all n ≥ 1

tn+1 := sup{t > 0 | τ((tn, τn, xn); t) ≤ −→σ },
τn+1 := τ((tn, τn, xn); tn+1),

xn+1 := xn + ∆↑
�
Z(M)

(←−σ ),

where, at each step ←−σ and −→σ are updated.
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Solution of the approximated problem

Theorem

There exists a solution of{
τ̇ (M)((t0, τ0, x); t) = (x +

∼
Z + ↑

�
Z(M)

)(τ (M)((t0, τ0, x); t)),

τ (M)((t0, τ0, x); t0) = 0 .

Moreover it holds

lim
M→∞

τ (M)((t0, τ0, x); t) = τ((t0, τ0, x); t)

where τ solves{
τ̇((t0, τ0, x); t) = (x + Z)(τ((t0, τ0, x); t)),

τ((t0, τ0, x); t0) = τ0 .
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Thank you for your attention

N. Gabrielli (UZH) October 23, 2014 37 / 38



Bibliography I

Barczy, M., Li, Z., and Pap, G. (2014).

Stochastic differential equation with jumps for multi-type continuous

state and continuous time branching processes with immigration.
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