Lamperti transform for multi-type CBI

Nicoletta Gabrielli
(based on a joint work with J. Teichmann)

University of Zürich

Department of Banking and Finance
nicoletta.gabrielli@bf.uzh.ch

October 23, 2014

Structure of the talk

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Branching processes

Let

$$
\left(\Omega,\left(X_{t}\right)_{t \geq 0},\left(\mathcal{F}_{t}^{\mathfrak{q}}\right)_{t \geq 0},\left(\mathbb{P}^{x}\right)_{x \in \mathbb{R}_{\geq 0}}\right)
$$

be a time homogeneous Markov process. The process X is said to be an branching process if it satisfies the following property:

Branching property

For any $t \geq 0$ and $x_{1}, x_{2} \in \mathbb{R}_{\geq 0}$, the law of X_{t} under $\mathbb{P}^{x_{1}+x_{2}}$ is the same as the law of $X_{t}^{(1)}+X_{t}^{(2)}$, where each $X^{(i)}$ has the same distribution as X under $\mathbb{P}^{x_{i}}$, for $i=1,2$.

Fourier-Laplace transform characterization

■ There exists a function $\Psi: \mathbb{R}_{\geq 0} \times \mathbb{C}_{\leq 0} \rightarrow \mathbb{C}$ such that

$$
\mathbb{E}^{x}\left[e^{u X_{t}}\right]=e^{x \Psi(t, u)}
$$

for all $x \in \mathbb{R}_{\geq 0}$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathbb{C}_{\leq 0}$.
■ On the set $\mathcal{Q}=\mathbb{R}_{\geq 0} \times \mathbb{C}_{\leq 0}$, the function Ψ satisfies the equation

$$
\partial_{t} \Psi(t, u)=R(\Psi(t, u)), \quad \Psi(0, u)=u
$$

The branching mechanism

The function R has the following Lévy-Khintchine form

$$
R(u)=\beta u+\frac{1}{2} u^{2} \alpha+\int_{0}^{\infty}\left(e^{u \xi}-1-u \xi \mathbb{1}_{\{|\xi| \leq 1\}}\right) M(d \xi)
$$

where $\beta \in \mathbb{R}, \alpha \geq 0$ and M is a Lévy measure with support in $\mathbb{R}_{\geq 0}$.

Lévy processes

A time homogeneous Markov process Z is a Lévy process if the following three conditions are satisfied:
L1) $Z_{0}=0 \mathbb{P}$-a.s.
L2) Z has independent and stationary increments, i.e. for all $n \in \mathbb{N}$ and
$0 \leq t_{0}<t_{1}<\ldots<t_{n+1}<\infty$
(independence) the random variables $\left\{Z_{t_{j+1}}-Z_{t_{j}}\right\}_{j=0, \ldots, n}$ are independent,
(stationarity) the distribution of $Z_{t_{j+1}}-Z_{t_{j}}$ coincides with the distribution of $Z_{\left(t_{j+1}-t_{j}\right)}$,
L3) (stochastic continuity) for each $a>0$ and $s \geq 0$, $\lim _{t \rightarrow s} \mathbb{P}\left(\left|Z_{t}-Z_{s}\right|>a\right)=0$.

Relation with infinitely divisible distributions

■ If Z is a Lévy process, then, for any $t \geq 0$, the random variable Z_{t} is infinitely divisible.
■ The Fourier transform of a Lévy process takes the form:

$$
\begin{aligned}
\mathbb{E}^{0}\left[e^{\left\langle u, Z_{t}\right\rangle}\right] & =e^{t \eta(u)}, \quad u \in \mathrm{i} \mathbb{R} \\
\eta(u) & =\beta u+\frac{1}{2} u^{2} \alpha+\int\left(e^{u \xi}-1-u \xi \mathbb{1}_{\{|\xi| \leq 1\}}\right) M(d \xi)
\end{aligned}
$$

where $\beta \in \mathbb{R}, \alpha \geq 0$ and M is a Lévy measure in \mathbb{R}.
■ The Fourier transform can be extended in the complex domain and the resulting Fourier-Laplace transform is well defined in

$$
\mathcal{U}:=\{u \in \mathbb{C} \mid \eta(\mathcal{R} e(u))<\infty\} .
$$

Lamperti transform

Theorem [Lamperti, 1967]

Let Z be a Lévy process with no negative jumps with Lévy exponent R, i.e.

$$
\mathbb{E}^{0}\left[e^{u Z_{t}}\right]=e^{t R(u)}, \quad u \in \mathcal{U}
$$

Define, for $t \geq 0$

$$
X_{t}=x+Z_{\theta_{t} \wedge \tau_{0}^{-}} \quad \theta_{t}:=\inf \left\{s>0 \left\lvert\, \int_{0}^{s} \frac{d r}{Z_{r}}>t\right.\right\}
$$

Then X is a CB process with branching mechanism R.

Lamperti transform

Theorem 2 in [Caballero et al., 2013]

Let Z be a Lévy process with no negative jumps with Lévy exponent R, i.e.

$$
\mathbb{E}^{0}\left[e^{u Z_{t}}\right]=e^{t R(u)}, \quad u \in \mathcal{U}
$$

The time-change equation

$$
X_{t}=x+Z_{\int_{0}^{t} X_{r} d r}
$$

admits a unique solution, which is a CB process with branching mechanism R.

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Add immigration

A CBI-process with branching mechanism R and immigration mechanism
F is a Markov process Z taking values in $\mathbb{R}_{\geq 0}$ satisfying
■ there exist functions $\phi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}$ and $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}$ such that

$$
\mathbb{E}^{x}\left[e^{u X_{t}}\right]=e^{\phi(t, u)+x \Psi(t, u)}
$$

for all $x \in \mathbb{R}_{\geq 0}$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathcal{U}$.
■ On the set $\mathcal{Q}=\mathbb{R}_{\geq 0} \times \mathcal{U}$, the functions ϕ and Ψ satisfy the following system :

$$
\begin{aligned}
\partial_{t} \phi(t, u) & =F(\Psi(t, u)), \quad \phi(0, u)=0 \\
\partial_{t} \Psi(t, u) & =R(\Psi(t, u)), \quad \Psi(0, u)=u
\end{aligned}
$$

Add immigration

The immigration mechanism

The function F has the following Lévy-Khintchine form

$$
F(u)=b u+\int_{0}^{\infty}\left(e^{u \xi}-1\right) m(d \xi)
$$

with $b \geq 0$ and m is a Lévy measure on $\mathbb{R}_{\geq 0}$ such that $\int(1 \wedge \xi) m(d \xi)<\infty$.

Lamperti transform for CBI

Theorem 2 in [Caballero et al., 2013]

Let $Z^{(1)}$ be a Lévy process with no negative jumps and $Z^{(0)}$ an independent subordinator such that

$$
\mathbb{E}^{0}\left[e^{u Z_{t}^{(1)}}\right]=e^{t R(u)} \text { and } \mathbb{E}^{0}\left[e^{u Z_{t}^{(0)}}\right]=e^{t F(u)}, \quad u \in \mathcal{U} .
$$

The time-change equation

$$
x_{t}=x+Z_{t}^{(0)}+Z_{\int_{0}^{t} x_{r} d r}^{(1)}
$$

admits a unique solution, which is a CBI process with branching mechanism R and immigration mechanism F.

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Definition

Let

$$
\left(\Omega,\left(X_{t}\right)_{t \geq 0},\left(\mathcal{F}_{t}^{\natural}\right)_{t \geq 0},\left(\mathbb{P}^{x}\right)_{x \in \mathbb{R}_{\geq 0}^{m}}\right)
$$

be a time homogeneous Markov process. The process X is said to be a multi-type CBI if it satisfies the following property:

See [Duffie et al., 2003, Barczy et al., 2014]

There exist functions $\phi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}$ and $\Psi: \mathbb{R}_{\geq 0} \times \mathcal{U} \rightarrow \mathbb{C}^{m}$ such that

$$
\mathbb{E}^{x}\left[e^{\left\langle u, X_{t}\right\rangle}\right]=e^{\phi(t, u)+\langle x, \Psi(t, u)\rangle}
$$

for all $x \in \mathbb{R}_{\geq 0}^{m}$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathcal{U}$, with $\mathcal{U}=\mathbb{C}_{\leq 0}^{m}$.

Generalized Riccati equations

On the set $\mathcal{Q}=\mathbb{R}_{\geq 0} \times \mathcal{U}$, the functions ϕ and ψ satisfy the following system of generalized Riccati equations:

$$
\begin{aligned}
\partial_{t} \phi(t, u) & =F(\Psi(t, u)), \quad \phi(0, u)=0 \\
\partial_{t} \Psi(t, u) & =R(\Psi(t, u)), \quad \Psi(0, u)=u
\end{aligned}
$$

Lévy-Khintchine form for the vector fields

The functions F and R_{k}, for each $k=1, \ldots, m$, have the following Lévy-Khintchine form

$$
\begin{aligned}
F(u) & =\langle b, u\rangle+\int_{\mathbb{R}_{\geq 2}^{m} \backslash\{0\}}\left(e^{\langle u, \xi\rangle}-1\right) m(d \xi), \\
R_{k}(u) & =\left\langle\beta_{k}, u\right\rangle+\frac{1}{2} u_{k}^{2} \alpha_{k}+\int_{\mathbb{R}_{\geq 0}^{m} \backslash\{0\}}\left(e^{\langle u, \xi\rangle}-1-\mathbf{u}_{k} \boldsymbol{\xi}_{k} \mathbb{1}_{\{|\xi| \leq 1\}}\right) M_{k}(d \xi) .
\end{aligned}
$$

Admissible parameters

The set of parameters satisfies the following restrictions
$\square b, \beta_{i} \in \mathbb{R}^{m}, i=1, \ldots, m$,

- $\alpha_{i} \geq 0$,

■ $m, M_{i}, i=1, \ldots, m$, Lévy measures.

drift	
$b \in \mathbb{R}_{\geq 0}^{m}$,	
$\left(\beta_{i}\right)_{k} \geq 0$,	for all $i=1, \ldots, m$ and $k \neq i$,
jumps	
$\operatorname{supp} m \subseteq \mathbb{R}_{\geq 0}^{m}$, and $\int(\|\xi\| \wedge 1) m(d \xi)<\infty$, $\operatorname{supp} M_{i} \subseteq \mathbb{R}_{\geq 0}^{m}$, for all $i=1, \ldots, m$ and $\int\left(\left(\left\|(\xi)_{-i}\right\|+\left\|\xi_{i}\right\|^{2}\right) \wedge 1\right) M_{i}(d \xi)<\infty$.	

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Remarks

Remarks

■ It is possible to define $m+1$ independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^{m} with Lévy exponents F, R_{1}, \ldots, R_{m}.

Remarks

■ It is possible to define $m+1$ independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^{m} with Lévy exponents F, R_{1}, \ldots, R_{m}.
■ In [Kallsen, 2006] it has been proved that the time change equation

$$
\begin{equation*}
X_{t}=x+Z_{t}^{(0)}+\sum_{k=1}^{m} Z_{\int_{0}^{t} X_{s}^{(k)} d s^{\prime}}^{(k)} \quad t \geq 0 \tag{*}
\end{equation*}
$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that $\left({ }^{*}\right)$ holds in distribution.

Remarks

■ It is possible to define $m+1$ independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^{m} with Lévy exponents F, R_{1}, \ldots, R_{m}.
■ In [Kallsen, 2006] it has been proved that the time change equation

$$
\begin{equation*}
X_{t}=x+Z_{t}^{(0)}+\sum_{k=1}^{m} Z_{\int_{0}^{t} X_{s}^{(k)} d s^{\prime}}^{(k)} \quad t \geq 0 \tag{*}
\end{equation*}
$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that $(*)$ holds in distribution.

- Moreover X has the distribution of a multi-type CBI with immigration mechanism F and branching mechanism $\left(R_{1}, \ldots, R_{m}\right)$.

Remarks

■ It is possible to define $m+1$ independent Lévy processes $Z^{(0)}, Z^{(1)}, \ldots, Z^{(m)}$ taking values in \mathbb{R}^{m} with Lévy exponents F, R_{1}, \ldots, R_{m}.
■ In [Kallsen, 2006] it has been proved that the time change equation

$$
\begin{equation*}
X_{t}=x+Z_{t}^{(0)}+\sum_{k=1}^{m} Z_{\int_{0}^{t} X_{s}^{(k)} d s^{\prime}}^{(k)} \quad t \geq 0 \tag{*}
\end{equation*}
$$

admits a weak solution, i.e. there exists a probability space containing two processes (X, Z) such that $(*)$ holds in distribution.

- Moreover X has the distribution of a multi-type CBI with immigration mechanism F and branching mechanism $\left(R_{1}, \ldots, R_{m}\right)$.

$$
\text { Does there exist a pathwise solution of }(*) ?
$$

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Results for multi-type CB

Theorem [G. and Teichmann, 2014]

Let $Z^{(1)}, \ldots, Z^{(m)}$ be independent \mathbb{R}^{m}-valued Lévy processes with

$$
\mathbb{E}^{0}\left[e^{\left\langle u, Z_{t}^{(k)}\right\rangle}\right]=e^{t R_{k}(u)}, \quad u \in \mathcal{U}
$$

where each R_{k} is of LK form with triplets given by a set of admissible parameters. Then the time-change equation

$$
X_{t}=x+\sum_{k=1}^{m} Z_{\int_{0}^{t} x_{s}^{(k)} d s}^{(k)} \quad t \geq 0
$$

admits a unique solution, which is a multi-type CB process with respect to the time-changed filtration.

Multiparameter time-change filtration

- Define

$$
Z=\left(Z_{1}^{(1)}, \ldots, Z_{m}^{(1)}, \ldots, Z_{1}^{(m)}, \ldots, Z_{m}^{(m)}\right)=:\left(Z^{(1)}, \ldots, Z^{\left(m^{2}\right)}\right)
$$

■ For all $\underline{s}=\left(s_{1}, \ldots, s_{m^{2}}\right) \in \mathbb{R}_{\geq 0}^{m^{2}}$

$$
\mathcal{G}_{\underline{s}}^{\natural}:=\sigma\left(\left\{Z_{t_{h}}^{(h)}, t_{h} \leq s_{h}, \text { for } h=1, \ldots, m^{2}\right\}\right) .
$$

- Complete it by $\mathcal{G}_{\underline{s}}=\bigcap_{n \in \mathbb{N}} \mathcal{G}_{\underline{s}^{(n)}+\frac{1}{n}} \vee \sigma(\mathcal{N})$.

Definition

A random variable $\underline{\tau}=\left(\tau_{1}, \ldots, \tau_{m^{2}}\right) \in \mathbb{R}_{\geq 0}^{m^{2}}$ is a $\left(\mathcal{G}_{\underline{s}}\right)$-stopping time if

$$
\{\underline{\tau} \leq \underline{s}\}:=\left\{\tau_{1} \leq s_{1}, \ldots, \tau_{m^{2}} \leq s_{m^{2}}\right\} \in \mathcal{G}_{\underline{s}}, \text { for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m^{2}}
$$

If $\underline{\tau}$ is a stopping time,

$$
\mathcal{G}_{\underline{\tau}}:=\left\{B \in \mathcal{G} \mid B \cap\{\underline{\tau} \leq \underline{s}\} \in \mathcal{G}_{\underline{s}} \text { for all } \underline{s} \in \mathbb{R}_{\geq 0}^{m^{2}}\right\}
$$

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

Extension to multi-type CBI

■ Let F be an immigration mechanism and $R=\left(R_{1}, \ldots, R_{m}\right)$ a branching mechanism.

- Let $Z^{(0)}$ Lévy process with exponent F and $Z^{(i)}$ Lévy process with exponent R_{i}.
■ Define, for $k=0, \ldots, m$,

$$
\bar{Z}^{(k)}:=(\bar{Z}_{0}^{(k)}, \underbrace{\bar{Z}_{1}^{(k)}, \ldots, \bar{Z}_{m}^{(k)}}_{m \text { coordinates }}):=(0, \underbrace{Z^{(k)}}_{m \text { coordinates }})
$$

■ Given $y=(1, x)$ with $x \in \mathbb{R}_{\geq 0}^{m}$, the previous result gives pathwise existence of

$$
Y_{t}=y+\sum_{k=0}^{m} \bar{Z}_{\int_{0}^{t} Y_{s}^{(i)} d s}^{(k)}
$$

■ It holds $Y=(1, X)$ where X is a $C B I(F, R)$.

Outline

(1) Introduction

- Real valued CB and Lamperti transform
- Extension to real valued CBI
(2) What is a multi-type CBI
- Definitions
- Some additional results
(3) Lamperti transform for multi-type CBI
- Multi-type CB and their time-change representation
- Extension to multi-type CBI
- Sketch of the proof

The one dimensional case

Question: Given a Lévy process Z taking values in \mathbb{R}, is there a solution of

$$
X_{t}=x+Z_{\int_{0}^{t} x_{s} d s}
$$

■ For the one dimensional case see also [Caballero et al., 2013].

An ODE point of view in $\mathbb{R}_{\geq 0}$

Introduce

$$
\tau(t):=\int_{0}^{t} X_{s} d s
$$

Does there exist a solution $\tau \in \mathbb{R}_{\geq 0}$ of

$$
\left\{\begin{array}{l}
\dot{\tau}(t)=x+Z(\tau(t)) \\
\tau(0)=0
\end{array}\right.
$$

An ODE point of view in $\mathbb{R}_{\geq 0}^{m}$

Introduce

$$
\begin{aligned}
\mathcal{Z}: \mathbb{R}_{\geq 0}^{m} & \rightarrow \mathbb{R}^{m} \\
\underline{s} & \mapsto \sum_{i=1}^{m} Z^{(i)}\left(s_{i}\right) .
\end{aligned}
$$

Does there exist a solution $\tau \in \mathbb{R}_{\geq 0}^{m}$ of

$$
\left\{\begin{array}{l}
\dot{\tau}(t)=x+\mathcal{Z}(\underline{\tau}(t)) \\
\underline{\tau}(0)=0
\end{array}\right.
$$

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right), \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =\tau_{0},
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t\right) & =(\mathbf{x}+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, \mathbf{x}\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

Construction of the time-change process

Theorem [G. and Teichmann, 2014]

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; t\right)\right), \\
\underline{\tau}\left(\left(\mathbf{t}_{0}, \boldsymbol{\tau}_{0}, x\right) ; \mathbf{t}_{0}\right) & =\boldsymbol{\tau}_{0},
\end{aligned}\right.
$$

for $t \geq t_{0}$ and $\tau_{0} \in \mathbb{R}_{\geq 0}^{m}$.

Decomposition of \mathcal{Z}

The Lévy-Itô decomposition together with the canonical form of the admissible parameters give

$$
\begin{aligned}
Z_{t}^{(i)}= & \beta_{i} t+\sigma_{i} B_{t}^{(i)}+\int_{0}^{t} \int \xi 1_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int \xi 1_{\{|\xi| \leq 1\}}\left(\mathcal{J}^{(i)}(d \xi, d s)-M_{i}(d \xi) d s\right)
\end{aligned}
$$

where $\sigma_{i}=\sqrt{\alpha_{i}}, B^{(i)}$ is a process in \mathbb{R}^{m} which evolves only along the the i-th coordinate as Brownian motion and $\mathcal{J}^{(i)}$ is the jump measure of the process $Z^{(i)}$.

- Decompose

$$
Z^{(i)}=: \tilde{Z}^{(i)}+\tilde{Z}^{(i)}
$$

where $\tilde{Z}^{(i)}$ and $\tilde{Z}^{(i)}$ are two stochastic processes on \mathbb{R}^{m} defined by

$$
\begin{aligned}
\tilde{z}_{i}^{(i)}(t):=\left(\beta_{i}\right)_{i} t+\sigma_{i} B^{(i)}(t) & +\int_{0}^{t} \int \xi_{i} \mathbb{1}_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int \xi_{i} \mathbb{1}_{\{|\xi| \leq 1\}} \widetilde{\mathcal{J}}^{(i)}(d \xi, d s)
\end{aligned}
$$

$$
\tilde{Z}_{k}^{(i)}(t):=0,
$$

$$
\text { for } k \neq i
$$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{Z}^{(i)}(t):=\stackrel{\sim}{\beta}_{i} t & +\int_{0}^{t} \int\left(\xi-\xi_{i} e_{i}\right) 1_{\{|\xi|>1\}} \mathcal{J}^{(i)}(d \xi, d s) \\
& +\int_{0}^{t} \int\left(\xi-\xi_{i} e_{i}\right) 1_{\{|\xi| \leq 1\}} \widetilde{\mathcal{J}}^{(i)}(d \xi, d s)
\end{aligned}
$$

where $\stackrel{\sim}{\beta}_{i}=\beta_{i}-e_{i}\left(\beta_{i}\right)_{i}$ and $\widetilde{\mathcal{J}}^{(i)}$ is the compensated jump measure.

Approximation of the jump part

- Introduce, for all $\underline{s} \in \mathbb{R}_{\geq 0}^{m}$,

$$
\tilde{\mathcal{Z}}(\underline{s}):=\sum_{i=1}^{m} \tilde{Z}^{(i)}\left(s_{i}\right), \quad \stackrel{\sim}{\mathcal{Z}}(\underline{s}):=\sum_{i=1}^{m} \widetilde{Z}^{(i)}\left(s_{i}\right) .
$$

■ Fix $M \in \mathbb{N}$ and consider the partition

$$
\mathcal{T}_{M}:=\left\{\frac{k}{2^{M}}, \quad k \geq 0\right\} .
$$

■ Define the following approximations on the partition \mathcal{T}_{M} :

$$
\begin{aligned}
\uparrow \tilde{Z}_{t}^{(i, M)} & :=\sum_{k=0}^{\infty} \stackrel{\chi}{Z}_{k / 2^{M}}^{(i)} 1_{\left[\frac{k}{2 M}, \frac{k+1}{2 M}\right)}(t), \\
\uparrow_{\mathcal{Z}}{ }^{(M)}(\underline{s}) & :=\sum_{i=1}^{m} \uparrow \tilde{Z}^{(i, M)}\left(s_{i}\right),
\end{aligned}
$$

The proof

- Set

$$
\begin{aligned}
\left(t_{0}, \tau_{0}, x\right) & :=(0,0, x) \\
\overleftarrow{\sigma} & :=(0, \ldots, 0) \\
\vec{\sigma} & :=\left(\sigma_{1}^{(1, M)}, \ldots, \sigma_{1}^{(i, M)}, \ldots, \sigma_{1}^{(m, M)}\right)
\end{aligned}
$$

■ Solve

$$
\left\{\begin{aligned}
\dot{\tau}((0,0, x) ; t) & =(x+\widetilde{\mathcal{Z}})(\underline{\tau}((0,0, x) ; t)) \\
\underline{\tau}\left((0,0, x) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

for $t \in\left[0, t_{1}\right]$ where

$$
t_{1}:=\sup \left\{t>0 \mid \underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) \leq \vec{\sigma}\right\}
$$

Remark There might be one or more indices i^{*}, where equality holds. Collect them in a set $I^{*} \subseteq\{1, \ldots, m\}$.

■ Update the values

$$
\begin{aligned}
& \pi_{l^{*}} \overleftarrow{\sigma}:=\pi_{l^{*}} \vec{\sigma} \\
& \pi_{I^{*}} \vec{\sigma}:=\pi_{l^{*}} \vec{\sigma}_{++}
\end{aligned}
$$

where $\vec{\sigma}_{++}$contains the next jumps of $\uparrow \chi^{\chi}(i, M)$ for all $i \in I^{*}$ after $\vec{\sigma}_{i}$.

- Define

$$
\begin{aligned}
& \tau_{1}:=\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{1}\right) \\
& x_{1}:=x+\Delta^{\uparrow} \mathcal{Z}^{(M)}(\overleftarrow{\sigma}) .
\end{aligned}
$$

■ Solve

$$
\left\{\begin{aligned}
\dot{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right) & =\left(x_{1}+\tilde{\mathcal{Z}}\right)\left(\underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t_{1}\right) & =\tau_{1}
\end{aligned}\right.
$$

for $t \in\left[t_{1}, t_{2}\right]$ where

$$
t_{2}:=\sup \left\{t>t_{1} \mid \underline{\tau}\left(\left(t_{1}, \tau_{1}, x_{1}\right) ; t\right) \leq \vec{\sigma}\right\}
$$

- Define iteratively, for all $n \geq 1$

$$
\begin{aligned}
t_{n+1} & :=\sup \left\{t>0 \mid \underline{\tau}\left(\left(t_{n}, \tau_{n}, x_{n}\right) ; t\right) \leq \vec{\sigma}\right\} \\
\tau_{n+1} & :=\underline{\tau}\left(\left(t_{n}, \tau_{n}, x_{n}\right) ; t_{n+1}\right) \\
x_{n+1} & :=x_{n}+\Delta^{\uparrow} \mathcal{Z}^{(M)}(\overleftarrow{\sigma})
\end{aligned}
$$

where, at each step $\overleftarrow{\sigma}$ and $\vec{\sigma}$ are updated

Solution of the approximated problem

Theorem

There exists a solution of

$$
\left\{\begin{aligned}
\dot{\underline{\tau}}^{(M)}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =\left(x+\tilde{\mathcal{Z}}+{ }^{\uparrow} \tilde{\mathcal{Z}}^{(M)}\right)\left(\underline{\tau}^{(M)}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right), \\
\underline{\tau}^{(M)}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =0 .
\end{aligned}\right.
$$

Moreover it holds

$$
\lim _{M \rightarrow \infty} \underline{\tau}^{(M)}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)=\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)
$$

where $\underline{\tau}$ solves

$$
\left\{\begin{aligned}
\underline{\dot{\tau}}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right) & =(x+\mathcal{Z})\left(\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t\right)\right) \\
\underline{\tau}\left(\left(t_{0}, \tau_{0}, x\right) ; t_{0}\right) & =\tau_{0}
\end{aligned}\right.
$$

Thank you for your attention

Bibliography I

固 Barczy，M．，Li，Z．，and Pap，G．（2014）．
Stochastic differential equation with jumps for multi－type continuous state and continuous time branching processes with immigration．
（Raballero，M．E．，Pérez Garmendia，J．L．，and Uribe Bravo，G． （2013）．
A Lamperti－type representation of continuous－state branching processes with immigration．

嗇 Duffie，D．，Filipović，D．，and Schachermayer，W．（2003）．
Affine processes and applications in finance．
R G．，N．and Teichmann，J．（2014）．
Pathwise construction of affine processes．
冨 Kallsen，J．（2006）．
A didactic note on affine stochastic volatility models．

