Regularity Results for Degenerate Kolmogorov Equation of Affine Type

Nicoletta Gabrielli

ETH Zürich

nicoletta.gabrielli@math.ethz.ch

June 4, 2013

Set up

The state space: $D \subset \mathbb{R}^d$

The model: $X = (\Omega, (\mathcal{F}_t)_{t \ge 0}, (X_t)_{t \ge 0}, (\mathbb{P}^x)_{x \in D_\Delta})$ càdlàg, time homogeneous, conservative Markov process in D

 $p_t(x, A) = \mathbb{P}^x(X_t \in A), \qquad t \ge 0, \ x \in D, \ A \in \mathcal{B}(D).$

The problem: Regularity of

$$P_t f(x) := \mathbb{E}^x \Big[f(X_t) \Big],$$

 $t \geq 0, x \in D, f \in \mathcal{M}.$

Option pricing

Option pricing

The easier task: regularity in time

Suppose that, for all $f \in \mathcal{M}$ there exists a function $\mathcal{A}f$ such that

$$M_t^f := f(X_t) - f(x) - \int_0^t \mathcal{A}f(X_s) ds$$

is a true martingale. Then, if $P_t |Af| < \infty$ for all $t \in [0, T]$

$$P_t f(x) = f(x) + \int_0^t P_s \mathcal{A} f(x) ds.$$

Towards the Kolmogorov equation

$$P_t f(x) = f(x) + \int_0^t P_s \mathcal{A}f(x) ds \stackrel{?}{=} f(x) + \int_0^t \mathcal{A}P_s f(x) ds$$

Remark

Without additional regularity assumptions we cannot conclude that

$$\mathcal{A}P_t f = P_t \mathcal{A}f, \qquad t \ge 0, f \in \mathcal{M}.$$

We want...

... to deal with

- functions not necessarily bounded
- Markov processes with jumps...
-and possibly degenerate, e.g. with degeneracy in the diffusion coefficient as in stochastic volatility models

A paradigm: The CIR with jumps

$$X_{t}^{x} = x + \int_{0}^{t} cX_{s}ds + \int_{0}^{t} \sqrt{X_{s}}dW_{s}$$

$$+ \int_{0}^{t} \int_{D} h(\xi) \left(J^{X}(ds, d\xi) - \frac{d\xi}{\xi^{2}}X_{s}ds \right)$$

$$+ \int_{0}^{t} \int_{D} (\xi - h(\xi)) J^{X}(ds, d\xi).$$

We need...

... a methodology which does not requires ellipticity or non-degeneracy assumptions.

Example (A guiding example)

$$X_t^x := x + 2 \int_0^t \sqrt{X_s} dW_s$$

$$X_t^x \stackrel{d}{=} L_x^t$$

$$L_x^t := 2t \sum_{k=1}^{N_{x/(2t)}} e_k$$

The advantage

Differentiability in space for X Differentiability in time for L

Table of contents

Introduction

Affine processes on the canonical state space Introduction A representation theorem

Regularity results

Regularity in time Regularity in space

-Affine processes on the canonical state space

Introduction

Affine processes on the canonical state space

An affine processes on $D = \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$ is a time homogeneous Markov process

$$X = (\Omega, (\mathcal{F}_t)_{t \ge 0}, (p_t)_{t \ge 0}, (X_t)_{t \ge 0}, (\mathbb{P}^x)_{x \in D_{\Delta}})$$

satisfying the following properties:

- ► (stochastic continuity) for every $t \ge 0$ and $x \in D$, $\lim_{s \to t} p_s(x, \cdot) = p_t(x, \cdot)$ weakly,
- (affine property) there exists $\Psi : \mathbb{R}_{>0} \times \mathcal{U} \to \mathbb{C}^d$ such that

$$\mathbb{E}^{\mathsf{x}}\left[e^{\langle u, X_t\rangle}\right] = \int_{D} e^{\langle u, \xi\rangle} p_t(\mathsf{x}, d\xi) = e^{\phi(t, u) + \langle \Psi(t, u), \mathsf{x} \rangle}$$

for all $x \in D$ and $(t, u) \in \mathbb{R}_{\geq 0} \times \mathcal{U}$, with

$$\mathcal{U} = \left\{ u \in \mathbb{C}^d \mid e^{\langle u, x \rangle} \text{ is a bounded function on } D \right\}.$$

-Affine processes on the canonical state space

Introduction

From affine processes to linear processes

Let AP(D) be the space of affine processes with state space D. Define the map

$$\mathfrak{\omega}: AP(\mathbb{R}^{m}_{\geq 0} \times \mathbb{R}^{n}) \to AP(\mathbb{R}^{m+1}_{\geq 0} \times \mathbb{R}^{n})$$

$$X \mapsto X^{\mathfrak{\omega}}$$

Input: X with
$$\mathbb{E}^{\times} \left[e^{\langle u, X_t \rangle} \right] = e^{\phi(t, u) + \langle x, \Psi(t, u) \rangle}$$

Output: X ^{∞} with $\mathbb{E}^{(1, x)} \left[e^{\langle u, X_t^{\infty} \rangle} \right] = e^{\langle (1, x), \Psi^{\infty}(t, u) \rangle}$

Linear structure

There exists a function $\Psi: \mathbb{R}_{>0} \times \mathcal{U} \to \mathbb{C}^d$ such that

$$\mathbb{E}^{x}\left[e^{\langle u,X_{t}\rangle}\right] = \int_{D} e^{\langle u,\xi\rangle} p_{t}(x,d\xi) = e^{\langle \Psi(t,u),x\rangle}.$$

-Affine processes on the canonical state space

Introduction

Generalized Riccati equations

On the set $Q = \mathbb{R}_{\geq 0} \times \mathcal{U}$, the function Ψ satisfies the following system of generalized Riccati equations:

Generalized Riccati equations

$$\partial_t \Psi(t, u) = \mathbf{R}(\Psi(t, u)), \quad \Psi(0, u) = u$$

where for each k = 1, ..., d the function \mathbf{R}_k has the following Lévy-Khintchine form

$$\mathbf{R}_{k}(u) = \langle \beta_{k}, u \rangle + \frac{1}{2} \langle u, \alpha_{k} u \rangle - \gamma_{k} \\ + \int_{D \setminus \{0\}} \left(e^{\langle u, \xi \rangle} - 1 - \langle \pi_{J \cup \{k\}} u, \pi_{J \cup \{k\}} h(\xi) \rangle \right) M_{k}(d\xi).$$

-Affine processes on the canonical state space

Introduction

Infinite divisibility in D

Let $\mathcal C$ the *convex cone* of continuous function $\eta:\mathcal U o\mathbb C_+$ of type

$$\eta(u) = \langle \mathsf{b}, u \rangle + \frac{1}{2} \langle \pi_J u, \sigma \pi_J u \rangle + \int_{D \setminus \{0\}} \left(e^{\langle u, \xi \rangle} - 1 - \langle \pi_J u, \pi_J h(\xi) \rangle \right) \nu(d\xi). \qquad (*)$$

Definition

A distribution λ on D_{Δ} is *infinitely divisible* if and only if its Laplace transform takes the form $e^{\eta(u)-c}$, where η has the form (*) and $c = \log \lambda(D)$.

 $p_t(x, \cdot)$ is infinitely divisible in D!

Affine processes on the canonical state space

A representation theorem

Outline

Introduction

Affine processes on the canonical state space Introduction

A representation theorem

Regularity results

Regularity in time Regularity in space

-Affine processes on the canonical state space

A representation theorem

A representation theorem

Let $(\mathcal{D}(\mathbb{R}_{\geq 0}; D_{\Delta}), (\mathcal{F}_t)_{t\geq 0}, (X_t)_{t\geq 0}, (\mathbb{P}^x)_{x\in D_{\Delta}})$ be a linear process on the canonical state space $D = \mathbb{R}^m_{\geq 0} \times \mathbb{R}^n$.

Proposition

For each fixed t > 0 and $x \in D$, there exists process $(L_s^{(t,x)})_{s \in [0,1]}$ such that:

1.
$$L_0^t = 0$$
,

2. for every $0 \le s_1 \le s_2 \le 1$, the increment $L_{s_2}^{(t,x)} - L_{s_1}^{(t,x)}$ is independent of the family $(L_s^{(t,x)})_{s \in [0,s_1]}$ and it distributed as $X_t^{(s_2-s_1)x}$.

Moreover for any fixed $t \ge 0$, and $x \in D$ there exists a unique modification $\tilde{L}^{(t,x)}$ of $L^{(t,x)}$ which is a Lévy process with càdlàg paths.

-Affine processes on the canonical state space

A representation theorem

The proof

Apply Kolmogorov's existence Theorem with the convolution semigroup $(p_t(sx, \cdot))_{s \ge 0}$.

 $\label{eq:chapman-Kolmogorov equations} \rightarrow \text{Semigroup property in time}$

$$p_{s+t}(x,\cdot) = p_s \cdot p_t(x,\cdot) := \int p_t(x, dy) p_s(y, \cdot)$$

Linearity \rightarrow Convolution property in space $p_t(x + y, \cdot) = p_t(x, \cdot) * p_t(y, \cdot)$

Outline

Introduction

Affine processes on the canonical state space Introduction A representation theorem

Regularity results

Regularity in time Regularity in space

The choice of the function space

$$C_F^{\infty} = \left\{ f \in C^{\infty}(D), \text{ such that for all } \alpha \in \mathbb{N}^d \exists C_{\alpha} > 0, e_{\alpha} \in \mathbb{N} \mid \right.$$
for all $x \in D|\partial_{\alpha}f(x)| \le C_{\alpha}F_{e_{\alpha}}(x)$

Convergence rate for weak approximation $\hookrightarrow F_{e_{\alpha}}(x) = (1 + |x|^{e_{\alpha}})$

Exponential semimartingale market models $\hookrightarrow F_{e_{\alpha}}(x) = \cosh(e_{\alpha}|x|)$

The Result

Theorem

Let $f \in C_F^{\infty}$. Then the function $u : \mathbb{R}_{\geq 0} \times D \to \mathbb{R}$ defined by $u(t, x) = \mathbb{E}^x [f(X_t)]$ is smooth with all derivatives satisfying the following property

for all $(t, x) \in [0, T] \times D$, $|\partial^{\alpha}_{(t,x)}u(t, x)| \leq K_{\alpha}(T)F_{e_{\alpha}}(x)$,

where $K_{\alpha}(T)$ is a positive constant depending on the time horizon T and the order of derivative α and $e_{\alpha} > 0$. Moreover it is a classical solution of the PIDE

$$\partial_t u(t, x) = \mathcal{A}u(t, x)$$

 $u(0, x) = f(x).$

Dissect the theorem

part 1 $t \mapsto P_t f(x)$ is differentiable for all $x \in D$ \hookrightarrow iterated Dynkin formula

part 2 $x \mapsto P_t f(x)$ is differentiable \hookrightarrow do a time-space shift

part 3 $(t, x) \mapsto P_t f(x)$ is differentiable with controlled growth.

-Regularity results

Regularity in time

Outline

Introduction

Affine processes on the canonical state space

Introduction A representation theorem

Regularity results

Regularity in time Regularity in space

-Regularity results

Regularity in time

Regularity in time: the martingale approach

Definition

Given a Markov process X the *extended generator* is an operator \mathcal{A} with domain $\mathcal{D}(\mathcal{A})$ such that, for any $f \in \mathcal{D}(\mathcal{A})$ the process

$$M_t^f := f(X_t) - f(x) - \int_0^t \mathcal{A}f(X_s) ds$$

is a local martingale under \mathbb{P}^x for every $x \in D$.

-Regularity results

Regularity in time

Integrability condition

```
Assumption A_F
For all i = 1, ..., d
\gamma_i = 0 and \int_{|\xi|>1} F_{e_{\alpha}}(\xi) M_i(d\xi) < \infty.
```

Lemma

Let X^{\times} be an affine process satisfying A_F . Then, for all $f \in C_F^{\infty}$ the process

$$M_t^f := f(X_t) - f(x) - \int_0^t \mathcal{A}f(X_s) ds$$

is a true martingale.

-Regularity results

Regularity in time

Theorem

Let X^{x} be an affine process satisfying A_{F} . Then

(i)
$$\mathcal{A}C_F^{\infty} \subseteq C_F^{\infty}$$
,

(ii) for any $f \in C_F^{\infty}$, $P_t f$ solves the Kolmogorov's equation

$$\partial_t u(t, x) = \mathcal{A}u(t, x)$$

 $u(0, x) = f(x),$

(iii) for any $f \in C_F^{\infty}$ with $\nu \in \mathbb{N}$ the following expansion of the transition semigroup holds:

$$\mathbb{E}^{x}\left[f(X_{t})\right] = f(x) + \sum_{k=1}^{\nu} \frac{t^{k}}{k!} \mathcal{A}^{k} f(x)$$
$$+ \frac{t^{\nu+1}}{\nu!} \int_{0}^{1} (1-s)^{\nu} \mathbb{E}^{x}\left[\mathcal{A}^{\nu+1} f(X_{st})\right] ds.$$

- -Regularity results
 - Regularity in time

Sketch of the proof I

(i) From Itô formula one sees that, for all $f \in C_F^{\infty}$

$$|\mathcal{A}f(x)| \leq KF(x).$$

The bound also holds for all the derivatives.

- (ii) From martingale property of M^f and (i) one gets (see [CKRT12])
 - differentiability of $t \mapsto P_t f$
 - commutative property $\mathcal{A}P_t = P_t \mathcal{A}$ for all $t \ge 0$
 - Kolmogorov equation

Regularity results

Regularity in time

Sketch of the proof II (iii) by induction on ν : $\nu = 0$ $\mathbb{E}^{x}\left[f(X_{t})\right] = f(x) + t \int_{0}^{1} \mathbb{E}^{x}\left[\mathcal{A}^{1}f(X_{st})\right] ds$ $\nu = 1$ $\mathbb{E}^{x}\left[f(X_{t})\right] = f(x) + t\mathcal{A}f(x) + \int_{0}^{t} (t-s)\mathbb{E}^{x}\left[\mathcal{A}^{2}f(X_{s})\right]ds$ $= f(x) + t\mathcal{A}f(x) + \left[\int_{0}^{t} P_{s}\mathcal{A}f(x)ds - t\mathcal{A}f(x)\right]$ $= f(x) + \int_{0}^{t} P_{s} \mathcal{A} f(x) ds$

 $\nu = 2, \ldots$

-Regularity results

Regularity in space

Outline

Introduction

Affine processes on the canonical state space

Introduction A representation theorem

Regularity results

Regularity in time Regularity in space

-Regularity results

Regularity in space

Main idea

Prove regularity in space of the function

$$u(t,x) = \mathbb{E}^{x} \Big[f(X_t) \Big]$$

using regularity in time of the function

$$v^{(t,x)}(s,y) := \mathbb{E}\left[f(L_s^{(t,x)} + y)\right]$$

where $L^{(t,x)}$ is the Lévy process representing X_t^x .

-Regularity results

Regularity in space

A brief recap

Theorem

There exists a process $(L_s^{(t,x)})_{s\geq 0}$ taking values in D such that

- 1. it has stationary and independent increments,
- 2. it is stochastically continuous,

3. *it holds*

$$\mathbb{E}\left[e^{\left\langle u,L_{s}^{(t,x)}\right\rangle}\right] = e^{s\left\langle x,\Psi(t,u)\right\rangle} = \mathbb{E}^{sx}\left[e^{\left\langle u,X_{t}\right\rangle}\right]$$

-Regularity results

Regularity in space

Make things rigorous

step 1 Consider the decomposition

$$X^{x+hx_i} \stackrel{law}{=} X^x + \widetilde{X}^{hx_i}, \ h > 0, i = 1, \dots, d,$$

where \widetilde{X}^{hx_i} is an independent copy of the process X starting from hx_i .

step 2 For fixed $(t, x) \in \mathbb{R}_{\geq 0} \times D$, $X_t^{x+hx_i}$ has the same distribution as the distribution of the Lévy process $L^{(t,x_i)}$ at time *h* starting from the initial random position $X_t^x \in D$.

step 3 From linearity in x,

$$u(t, x + hx_i) = \mathbb{E}^{x} \Big[v^{(t,x_i)}(h, X_t) \Big].$$

-Regularity results

Regularity in space

Iterated Dynkin formula

Proposition

Let $L^{(t,x)}$ be the Lévy process representing X^x . For any fixed $t \ge 0$ and $x \in D$

$$Q_s^{(t,x)}f(y) = \mathbb{E}\left[f(L_s^{(t,x)} + y)\right]$$

 $s \geq 0, y \in \mathbb{R}^d, f \in C_F^{\infty}$. Then

$$Q_s^{(t,x)}f = \sum_{k=0}^{\nu} \frac{s^k}{k!} (\mathcal{L}^{(t,x)})^k f + \mathcal{R}_{\nu}f,$$

with \mathcal{R}_{ν} is bounded uniformly in $s \in [0, 1]$.

-Regularity results

Regularity in space

With the aid of the new representation

Theorem

Let X^{\times} be an affine process satisfying the A_F . Then given a function $f \in C_F^{\infty}$, $P_t f$ is again in C_F^{∞} for all $t \ge 0$.

Proof:

$$P_t f(x + hx_i) = \mathbb{E}^x \Big[Q^{(t,x_i)} f(X_t) \Big]$$
$$\partial_{x_i} u(t,x) = \mathbb{E}^x \Big[\mathcal{L}^{(t,x_i)} f(X_t) \Big]$$
$$\partial_x^{\alpha} u(t,x) = \mathbb{E}^x \Big[(\mathcal{L}^{(t,x_1)})^{\alpha_1} \cdots (\mathcal{L}^{(t,x_d)})^{\alpha_d} f(X_t) \Big].$$

Regularity results

Regularity in space

Higher order derivatives

space derivatives $\uparrow \\ \alpha = (\alpha_0 \quad \overline{\alpha}) \\ \downarrow \\ \text{time derivatives}$

By induction on $\alpha_0 := |\alpha| - |\overline{\alpha}|$ $\alpha_0 = 1$ $\partial_t \partial_x^{\overline{\alpha}} u(t, x) = \mathcal{A} \partial_x^{\overline{\alpha}} u(t, x) \in C_F^{\infty}.$

Suppose it holds for $\alpha_0=1,\ldots,|lpha|-|\overline{lpha}|-1$

$$\partial_t^{\alpha_0}\partial_x^{\overline{lpha}}u(t,x) = \partial_t\left(\mathcal{A}\partial_t^{\alpha_0-1}\partial_x^{\overline{lpha}}u(t,x)
ight) \in C_F^{\infty}.$$

-Regularity results

Regularity in space

Thank you

Regularity Results for Degenerate Kolmogorov Equation of Affine Type $\bigsqcup_{\text{References}}$

Bibliography

C. Cuchiero, M. Keller-Ressel, and J. Teichmann. Polynomial processes and their applications to mathematical finance.

Finance and Stochastics, 16(4):711–740, 2012.

- D. Duffie, D. Filipović, and W. Schachermayer.
 Affine processes and applications in finance.
 The Annals of Applied Probability, 13(3):pp. 984–1053, 2003.
- P. Doersek and J. Teichmann.
 A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations.
 ArXiv e-prints, November 2010.