What is....an Affine Process?

Nicoletta Gabrielli

May 10, 2011

(ロ)、

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

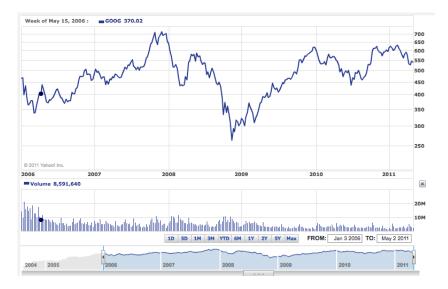


Figure: Google Inc.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Black-Scholes Option Pricing

•
$$(X_t)_{t\geq 0}$$
 log-price of the asset, i.e. $S_t = S_0 e^{X_t}$.

Black-Scholes model

$$X_t = -\frac{1}{2}\sigma^2 t + \sigma B_t,$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

where

- σ is the volatility parameter,
- $(B_t)_{t\geq 0}$ is a standard Brownian motion.

Black Scholes formula

Call Options Expire at close Friday, May 20					ay 20, 2011		
Strike	Symbol	Last	Chg	Bid	Ask	Vol	Open Int
400.00	GOOG110521C00400000	135.50	0.00	141.00	144.20	8	22
420.00	GOOG110521C00420000	104.53	0.00	121.20	124.60	1	33
430.00	GOOG110521C00430000	95.80	0.00	111.20	114.70	2	2
440.00	GOOG110521C00440000	85.70	0.00	101.20	104.30	4	16

Figure: Call Options on Google Inc.

- A European call option on an asset S_t , paying no dividends, with maturity date T and strike price K is defined as a contingent claim with payoff max $(S_T K, 0)$ at maturity,
- The Black-Scholes formula for the value of this call option is:

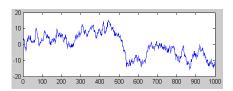
$$C_{BS}(S_t, K, \tau, \sigma) = S_t N(d_1) - K N(d_2),$$

$$d_1 = \frac{-\log x + \tau \frac{\sigma^2}{2}}{\sigma \sqrt{\tau}}, \quad d_2 = \frac{-\log x - \tau \frac{\sigma^2}{2}}{\sigma \sqrt{\tau}},$$

where $\tau = T - t$, $x = K/S_t$ and N(u) is the normal cumulative distribution function.

Black Scholes limitations (1)

Figure: Evolution of SLM (NYSE), 5d, 1m and 1y



- Brownian motion paths are continuous,
- Scale invariance property for Brownian motion: if (B_t)_{t≥0} is a Brownian motion, then the process X_t = ¹/_aB_{a²t}, a > 0 is also a Brownian motion.

< ロ > < 同 > < 回 > < 回 >

Black Scholes limitations (2)

Gaussian patterns are in contradiction with market reality:

- Distributions are characterized by heavy tails and high peaks,
- If C^{*}_t(T, K) are the market prices, there exists a unique volatility parameter σ_{BS}(T, K) such that the corresponding Black-Scholes prices match the market price:

 $\exists !\sigma_{BS}(K,T) > 0 : C_{BS}(S_t,K,\tau,\sigma_{BS}(T,K)) = C_t^*(T,K).$

Implied volatility

 σ_{BS} : $(K, T) \rightarrow \sigma_{BS}(K, T)$.

Black-Scholes model predicts a flat profile:

$$\sigma_{BS}(K,T)=\sigma.$$

Some market evidences

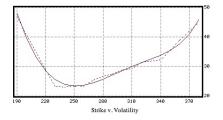


Figure: Corn Option Analysis: Volatility Skew

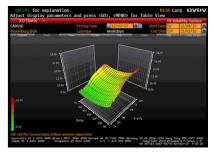


Figure: Implied Volatility Surface of CAD/USD Cross

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

- Remove continuity assumptions on sample paths ~> jump diffusion models,
- Add more source of uncertainty ~> stochastic volatility models,
- Dependence structure between different assets → covariance processes, i.e. matrix-valued processes.

Table of contents

- 1 Canonical Affine Processes
 - Introduction
 - Definition
 - Characterization
 - Examples
- 2 Path Approximation and Option Pricing for Affine Processes

- Discretization
- Option pricing
- 3 Multivariate Affine Stochastic Volatility Model
 - Introduction
 - Definition
 - Characterization
 - Examples

Canonical Affine Processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

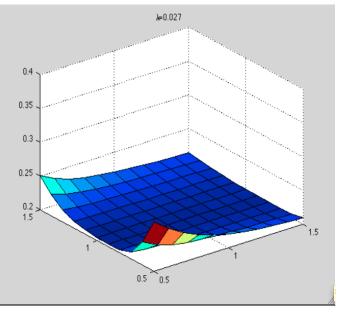
Merton jump diffusion model

$$X_t = \left(-\frac{1}{2}\sigma^2 - \lambda k\right)t + \sigma B_t + \sum_{j=1}^{N_t} Y_k,$$

where

- σ is the volatility parameter,
- $(B_t)_{t\geq 0}$ is a standard Brownian motion process,
- $(N_t)_{t\geq 0}$ is a Poisson process with intensity λ ,
- (Y_j)_{j≥0} are i.i.d. random variables with distribution N(μ, δ²),
 k = e^{μ+¹/₂δ²} − 1.

Merton implied volatility surface



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Add more features....random clock

Variance Gamma model

$$X_t = \frac{t}{\nu} \log \left(1 - \theta \nu - \frac{\sigma^2 \nu}{2} \right) + \theta \Gamma_t + \sigma B_{\Gamma_t},$$

where

- $(B_t)_{t\geq 0}$ is a Brownian motion,
- (Γ_t)_{t≥0} is an independent gamma process with unit mean and variance ν.

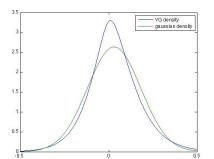


Figure: Comparison between VG density and gaussian density with same mean and variance.

Add more features..... stochastic volatility

The Heston Model

$$dX_t = -\frac{V_t}{2}dt + \sqrt{V_t}dB_t,$$

$$dV_t = \kappa(\theta - V_t)dt + \sigma\sqrt{V_t}d\widetilde{B}_t,$$

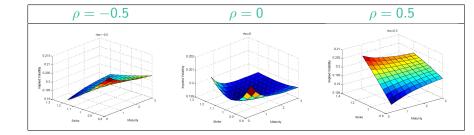
$$dB_td\widetilde{B}_t = \rho dt,$$

where

- $(S_t)_{t\geq 0}$ and $(V_t)_{t\geq 0}$ are price and volatility processes,
- $(B_t)_{t\geq 0}$ and $(\widetilde{B}_t)_{t\geq 0}$ are Brownian motions with correlation ρ ,

• θ is long-run mean, κ is the rate of reversion and σ is volatility of volatility.

Impact of ρ on volatility surfaces



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition

A stochastic process X is called a *canonical affine process*, if it is

- a time-homogeneneous Markov process,
- stochastically continuous,
- takes values in $D = \mathbb{R}^m_{>0} \times \mathbb{R}^n$,
- has the following property:

Affine Property

There exists functions ϕ and $\psi,$ taking values in $\mathbb C$ and $\mathbb C^{m+n}$ respectively, such that

$$\mathbb{E}_{\mathsf{x}}\left[e^{\langle X_t,u
angle}
ight]=e^{\phi(t,u)+\langle \mathsf{x},\psi(t,u)
angle},$$

for all $x \in D$, and for all $(t, u) \in \mathbb{R}_{\geq 0} imes \mathcal{U}$, where

 $\mathcal{U} = \{ u \in \mathbb{C} \mid \mathcal{R}e\langle x, u \rangle \leq 0 \text{ for all } x \in D \}.$

Regularity

An Affine Process is called regular, if the derivatives

$$F(u) := \partial_t \phi(t, u) \big|_{t=0}, \quad R(u) := \partial_t \psi(t, u) \big|_{t=0}$$

exist, and are continuous at u = 0.

Theorem (Keller-Ressel, Teichmann, Schachermayer (2009))

Every canonical Affine Process is regular.

Theorem (Duffie et al. (2003))

If $(X_t)_{t\geq 0}$ is a regular affine process, then ϕ and ψ satisfy the generalized Riccati equations

$$\begin{aligned} \partial_t \phi(t, u) &= F(\psi(t, u)), \quad \phi(0, u) = 0, \\ \partial_t \psi(t, u) &= R(\psi(t, u)), \quad \psi(0, u) = u. \end{aligned}$$

Examples (1)

- The functions F : U → C and R : U → C^d are explicitly described in terms of model parameters,
- F(u) represents the state-independent dynamic, and R(u) the state-dependent dynamic of the process.

Brownian Motion $dX_t = bdt + \sigma dB_t$, $F(u) = bu + \frac{1}{2}\sigma^2 u^2$
R(u) = 0

Vasicek

$$dX_t = (b + \beta X_t)dt + \sigma dB_t, \qquad \begin{array}{l} F(u) = bu + \frac{1}{2}\sigma^2 u^2 \\ R(u) = \beta u \end{array}$$

CIR

$$dX_t = (b + \beta X_t)dt + \sigma \sqrt{X_t}dB_t,$$

$$F(u) = bu$$

$$R(u) = \beta u + \frac{1}{2}\sigma^2 u^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Heston

$$\begin{aligned} dV_t &= (b + \beta V_t)dt + \sigma \sqrt{V_t} dB_t^1, \\ dX_t &= -\frac{1}{2} V_t dt + \sqrt{V_t} (\rho dB_t^1 + \sqrt{1 - \rho^2} dB_t^2), \\ F(u_1, u_2) &= (b, 0) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \\ R_1(u_1, u_2) &= \frac{1}{2} (u_1, u_2) \begin{pmatrix} \sigma^2 & \rho \sigma \\ \rho \sigma & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + (\beta, -\frac{1}{2}) \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \\ R_2(u_1, u_2) &= 0. \end{aligned}$$

◆□ ▶ <圖 ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q @</p>

 Continuous-state branching processes exhibit the aforementioned 'affine property'.

Example: $dY_t = \sqrt{2Y_t} dB_t$ $Y_0 = x \ge 0$

$$\mathbb{E}[e^{uY_t}] = e^{x \frac{u}{1-ut}}, \quad u \in \mathbb{C} \text{ with } \mathcal{R}e(u) < \frac{1}{t}.$$

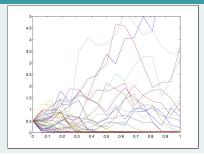
Remark

The class of CBI-processes is precisely the class of affine processes with state space $\mathbb{R}^d_{\geq 0}.$

Path Approximation and Option Pricing

Path Approximation

A Motivating Example



 $dY_t = \sqrt{2Y_t} dB_t,$ $Y_0 = x \ge 0.$

- The diffusion term, being decreasing to zero as Y_t approaches the origin, prevents (Y)_{t≥0} from taking negative values. This feature can be attractive in interest rate modeling,
- The main difficulty in discretization is located at the boundary of the state space cones, where the vector fields lack the Lipschitz property.

European Options

- A fundamental computational operation in any asset pricing model is the pricing of European options.
- Pricing of such an option amounts to calculating the expectation

$$C(T,K) = \mathbb{E}[max(S_T - K, 0)],$$

under the risk-neutral measure.

Numerical methods in Option pricing

- 1 if the distribution of S_t is analytically known \rightsquigarrow Numerical quadrature,
- 2 if the Laplace-Fourier transform is analytically know → Fourier Methods,
- 3 Monte Carlo Simulation.

Example: Option pricing in Merton Jump Diffusion Model

Density Function

$$f_{\mathcal{M}}(x) = \sum_{n=0}^{\infty} \frac{e^{-\lambda t} (\lambda t)^n}{n!} \mathcal{N}(x),$$

where $\mathcal{N}(x) = \frac{1}{\sqrt{2\pi(\sigma^2 t + n\delta^2)}} \exp\Big(-\frac{\left(x + (\frac{1}{2}\sigma^2 + \lambda k)t - nm\right)^2}{2(\sigma^2 t + n\delta^2)}\Big).$

Characteristic function

$$\mathbb{E}[e^{iuX_t}] = \exp\left\{t\left(iu\gamma - \frac{1}{2}\sigma^2u^2 + \lambda(e^{ium - \frac{1}{2}\delta^2u^2} - 1)\right)\right\}.$$

Option pricing

•
$$C = \sum_{n \ge 0} \frac{e^{-\lambda \tau} (\lambda \tau)^n}{n!} C_{BS}(t, S_n, \sigma_n)$$

with $\sigma_n^2 = \sigma^2 + \frac{n\delta^2}{\tau}$
 $S_n = S \exp\left(nm + \frac{n\delta^2}{2} - \lambda \tau e^{m+\delta/2} + \lambda \tau\right)$
• $C = S - \frac{\sqrt{SK}}{\pi} \int_0^\infty \mathcal{R}e\left(e^{iuk}\mathbb{E}\left[e^{iu(u-\frac{i}{2})}\right]\right) \frac{du}{u^2 + \frac{1}{4}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Multivariate Affine Stochastic Volatility Model

Affine processes on positive semidefinite matrices

- S_d : symmetric $d \times d$ -matrices equipped with scalar product $\langle x, y \rangle = Tr(xy)$,
- \mathcal{S}_d^+ : cone of symmetric $d \times d$ -positive semidefinite matrices,
- S_d^{++} : interior of S_d^+ in S_d .

Example: Wishart Process

$$dX_t = (b + MX_t + X_t M^T) dt + \sqrt{X_t} dB_t \Sigma + \Sigma^T dB_t^T \sqrt{X_t}, \quad X_0 = x$$

- $x \in S_d^+$,
- *M* d × d invertible matrix,
- Σ d × d invertible matrix,
- $b \in S_d^+$ such that $b - (d-1)\Sigma^T \Sigma \in S_d^+$,
- (B_t)_{t≥0} is a d × d matrix of Brownian motion.

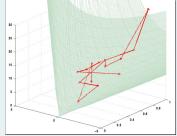


Figure: Wishart Process path

Definition

A stochastic process $(X_t, Y_t)_{t \ge 0}$ is called a *Multivariate Affine* Stochastic Volatility Model, if it is

- a time-homogeneneous Markov process,
- stochastically continuous,
- takes values in $D = S_d^+ \times \mathbb{R}^d$,
- has the following property:

Affine Property

There exists functions Φ and ψ , such that

$$\mathbb{E}_{x,y}\left[e^{Tr(uX_t)+v^TY_t}\right] = \Phi(t,u,v)e^{Tr(\psi(t,u,v)x)+v^Ty}$$

for all $(x, y) \in D$, and for all $(t, u, v) \in Q$, where

$$\mathcal{U} = \left\{ (t, u, v) \in \mathbb{R}_{\geq 0} \times \mathcal{S}_d + i \mathcal{S}_d \times \mathbb{C}^d \mid \mathbb{E}_{x, y} \left[e^{\left| \operatorname{Tr}(u X_t) + v^T Y_t \right|} \right] < \infty \right\}.$$

Theorem (Cuchiero (2011))

Let
$$(\tau, u, v) \in \mathcal{Q}$$
 such that $\mathbb{E}_{0,0}\left[e^{Tr(uX_{\tau})+v^{T}Y_{\tau}}\right] \neq 0$.
The derivatives

$$F(u,v) := \partial_t \Phi(t,u,v) \big|_{t=0} \text{ and } R(u,v) := \partial_t \psi(t,u,v) \big|_{t=0}$$

exist are continuous in (u, v).

• For
$$t \in [0, au)$$
, Φ and ψ satisfy

$$\begin{aligned} \partial_t \Phi(t, u, v) &= \Phi(t, u, v) F(\psi(t, u, v), v), \quad \Phi(0, u, v) = 1, \\ \partial_t \psi(t, u, v) &= R(\psi(t, u, v), v), \qquad \psi(0, u, v) = u. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$dX_t = (b + MX_t + X_t M^T)dt + \sqrt{X_t}dB_t\Sigma + \Sigma^T dB_t^T\sqrt{X_t}, dY_t = -\frac{1}{2}X_t^{diag}dt + \sqrt{X_t}d\widetilde{B}_t,$$

where

X_t^{diag} is the vector containing the diagonal entries of X_t,
 (B̃_t)_{t≥} is a ℝ^d-valued Brownian motion correlated with (B_t)_{t≥} with correlation ρ ∈ ℝ^d.

$$F(u, v) = Tr(bu),$$

$$R(u, v) = 2u\Sigma^{T}\Sigma u + \frac{1}{2}v^{T}v + u(\Sigma^{T}\rho v^{T} + M) + (v\rho^{T}\Sigma + M^{T})u$$

$$-\frac{1}{2}diag(v),$$

where diag(v) is the $d \times d$ matrix with v on the main diagonal.

Thank you for your attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで