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Introduction



Figure: Google Inc.



Black-Scholes Option Pricing

(St)t≥0 asset price,

(Xt)t≥0 log-price of the asset, i.e. St = S0eXt .

Black-Scholes model

Xt = −1

2
σ2t + σBt ,

where

σ is the volatility parameter,

(Bt)t≥0 is a standard Brownian motion.



Black Scholes formula

Figure: Call Options on Google Inc.

A European call option on an asset St , paying no dividends,
with maturity date T and strike price K is defined as a
contingent claim with payoff max(ST − K , 0) at maturity,

The Black-Scholes formula for the value of this call option is:

CBS(St ,K , τ, σ) = StN(d1)− KN(d2),

d1 =
− log x+τ σ2

2

σ
√
τ

, d2 =
− log x−τ σ2

2

σ
√
τ

,

where τ = T − t, x = K/St and N(u) is the normal
cumulative distribution function.



Black Scholes limitations (1)

Figure: Evolution of SLM
(NYSE), 5d, 1m and 1y

Brownian motion paths
are continuous,

Scale invariance property
for Brownian motion: if
(Bt)t≥0 is a Brownian
motion, then the process
Xt = 1

aBa2t , a > 0 is also
a Brownian motion.

http://upload.wikimedia.org/wikipedia/commons/2/2a/Wiener_process_animated.gif


Black Scholes limitations (2)

Gaussian patterns are in contradiction with market reality:

Distributions are characterized by heavy tails and high peaks,

If C ∗t (T ,K ) are the market prices, there exists a unique
volatility parameter σBS(T ,K ) such that the corresponding
Black-Scholes prices match the market price:

∃!σBS(K ,T ) > 0 : CBS(St ,K , τ, σBS(T ,K )) = C ∗t (T ,K ).

Implied volatility

σBS : (K ,T )→ σBS(K ,T ).

Black-Scholes model predicts a flat profile:

σBS(K ,T ) = σ.



Some market evidences

Figure: Corn Option Analysis:
Volatility Skew Figure: Implied Volatility Surface

of CAD/USD Cross



Add more features.....

Remove continuity assumptions on sample paths  jump
diffusion models,

Add more source of uncertainty  stochastic volatility
models,

Dependence structure between different assets  covariance
processes, i.e. matrix-valued processes.
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Canonical Affine Processes



Add more features.....jumps

Merton jump diffusion model

Xt =

(
−1

2
σ2 − λk

)
t + σBt +

Nt∑
j=1

Yk ,

where

σ is the volatility parameter,

(Bt)t≥0 is a standard Brownian motion process,

(Nt)t≥0 is a Poisson process with intensity λ,

(Yj)j≥0 are i.i.d. random variables with distribution N (µ, δ2),

k = eµ+ 1
2
δ2 − 1.



Merton implied volatility surface
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Add more features....random clock

Variance Gamma model

Xt =
t

ν
log

(
1− θν − σ2ν

2

)
+ θΓt + σBΓt ,

where

(Bt)t≥0 is a Brownian motion,

(Γt)t≥0 is an independent gamma process with unit mean and
variance ν.

Figure: Comparison between
VG density and gaussian
density with same mean and
variance.



Add more features..... stochastic volatility

The Heston Model

dXt = −Vt

2
dt +

√
VtdBt ,

dVt = κ(θ − Vt)dt + σ
√

VtdB̃t ,

dBtdB̃t = ρdt,

where

(St)t≥0 and (Vt)t≥0 are price and volatility processes,

(Bt)t≥0 and (B̃t)t≥0 are Brownian motions with correlation ρ,

θ is long-run mean, κ is the rate of reversion and σ is
volatility of volatility.



Impact of ρ on volatility surfaces

ρ = −0.5 ρ = 0 ρ = 0.5



Definition

A stochastic process X is called a canonical affine process, if it is

a time-homogeneneous Markov process,

stochastically continuous,

takes values in D = Rm
≥0 × Rn,

has the following property:

Affine Property

There exists functions φ and ψ, taking values in C and Cm+n

respectively, such that

Ex

[
e〈Xt ,u〉

]
= eφ(t,u)+〈x ,ψ(t,u)〉,

for all x ∈ D, and for all (t, u) ∈ R≥0 × U , where

U = {u ∈ C | Re〈x , u〉 ≤ 0 for all x ∈ D}.



Regularity

An Affine Process is called regular, if the derivatives

F (u) := ∂tφ(t, u)
∣∣
t=0

, R(u) := ∂tψ(t, u)
∣∣
t=0

exist, and are continuous at u = 0.

Theorem (Keller-Ressel, Teichmann, Schachermayer (2009))

Every canonical Affine Process is regular.

Theorem (Duffie et al. (2003))

If (Xt)t≥0 is a regular affine process, then φ and ψ satisfy the
generalized Riccati equations

∂tφ(t, u) = F (ψ(t, u)), φ(0, u) = 0,
∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u.



Examples (1)

The functions F : U → C and R : U → Cd are explicitly
described in terms of model parameters,

F (u) represents the state-independent dynamic, and R(u) the
state-dependent dynamic of the process.

Brownian Motion

dXt = bdt + σdBt ,
F (u) = bu + 1

2σ
2u2

R(u) = 0

Vasicek

dXt = (b + βXt)dt + σdBt ,
F (u) = bu + 1

2σ
2u2

R(u) = βu

CIR

dXt = (b + βXt)dt + σ
√

XtdBt ,
F (u) = bu
R(u) = βu + 1

2σ
2u2



Example (2)

Heston

dVt = (b + βVt)dt + σ
√

VtdB1
t ,

dXt = −1
2 Vtdt +

√
Vt(ρdB1

t +
√

1− ρ2dB2
t ),

F (u1, u2) = (b, 0)

(
u1

u2

)
,

R1(u1, u2) = 1
2 (u1, u2)

(
σ2 ρσ
ρσ 1

)(
u1

u2

)
+ (β,−1

2 )

(
u1

u2

)
,

R2(u1, u2) = 0.



Example (3)

Continuous-state branching processes exhibit the
aforementioned ‘affine property’.

Example: dYt =
√

2YtdBt Y0 = x ≥ 0

E
[
euYt

]
= ex

u
1−ut , u ∈ C with Re(u) <

1

t
.

φ(t, u) = 0,

ψ(t, u) is a Möbius transformation.

Remark

The class of CBI-processes is precisely the class of affine processes
with state space Rd

≥0.



Path Approximation
and Option Pricing



Path Approximation

A Motivating Example

dYt =
√

2YtdBt ,
Y0 = x ≥ 0.

The diffusion term, being decreasing to zero as Yt approaches
the origin, prevents (Y )t≥0 from taking negative values. This
feature can be attractive in interest rate modeling,

The main difficulty in discretization is located at the boundary
of the state space cones, where the vector fields lack the
Lipschitz property.



European Options

A fundamental computational operation in any asset pricing
model is the pricing of European options.

Pricing of such an option amounts to calculating the
expectation

C (T ,K ) = E[max(ST − K , 0)],

under the risk-neutral measure.

Numerical methods in Option pricing

1 if the distribution of St is analytically known  Numerical
quadrature,

2 if the Laplace-Fourier transform is analytically know  Fourier
Methods,

3 Monte Carlo Simulation.



Example: Option pricing in Merton Jump Diffusion Model

Density Function

fM(x) =
∑∞

n=0
e−λt(λt)n

n! N (x),

where N (x) = 1√
2π(σ2t+nδ2)

exp
(
− (x+( 1

2σ
2+λk)t−nm)2

2(σ2t+nδ2)

)
.

Characteristic function

E[e iuXt ] = exp
{

t
(

iuγ − 1
2σ

2u2 + λ(e ium−
1
2
δ2u2 − 1)

)}
.

Option pricing

C =
∑

n≥0
e−λτ (λτ)n

n! CBS(t,Sn, σn)

with σ2
n = σ2 + nδ2

τ

Sn = S exp
(

nm + nδ2

2 − λτem+δ/2 + λτ
)
,

C = S −
√
SK
π

∫∞
0
Re
(

e iukE
[
e iu(u− i

2 )
] )

du
u2+ 1

4

.



Multivariate Affine
Stochastic Volatility Model



Affine processes on positive semidefinite matrices

Sd : symmetric d × d-matrices equipped with scalar product
〈x , y〉 = Tr(xy),
S+
d : cone of symmetric d × d-positive semidefinite matrices,
S++
d : interior of S+

d in Sd .

Example: Wishart Process

dXt = (b + MXt + XtM
T )dt +

√
XtdBtΣ + ΣTdBT

t

√
Xt , X0 = x

x ∈ S+
d ,

M d × d invertible
matrix,

Σ d × d invertible
matrix,

b ∈ S+
d such that

b−(d−1)ΣTΣ ∈ S+
d ,

(Bt)t≥0 is a d × d
matrix of Brownian
motion.

Figure: Wishart Process path



Definition

A stochastic process (Xt ,Yt)t≥0 is called a Multivariate Affine
Stochastic Volatility Model, if it is

a time-homogeneneous Markov process,

stochastically continuous,

takes values in D = S+
d × Rd ,

has the following property:

Affine Property

There exists functions Φ and ψ, such that

Ex ,y

[
eTr(uXt)+vTYt

]
= Φ(t, u, v)eTr(ψ(t,u,v)x)+vT y ,

for all (x , y) ∈ D, and for all (t, u, v) ∈ Q, where

U =
{

(t, u, v) ∈ R≥0 × Sd + iSd × Cd | Ex,y

[
e|Tr(uXt)+vTYt |

]
<∞

}
.



Theorem (Cuchiero (2011))

Let (τ, u, v) ∈ Q such that E0,0

[
eTr(uXτ )+vTYτ

]
6= 0.

The derivatives

F (u, v) := ∂tΦ(t, u, v)
∣∣
t=0

and R(u, v) := ∂tψ(t, u, v)
∣∣
t=0

exist are continuous in (u, v).

For t ∈ [0, τ), Φ and ψ satisfy

∂tΦ(t, u, v) = Φ(t, u, v)F (ψ(t, u, v), v), Φ(0, u, v) = 1,
∂tψ(t, u, v) = R(ψ(t, u, v), v), ψ(0, u, v) = u.



Example: Multivariate Heston Model

dXt = (b + MXt + XtM
T )dt +

√
XtdBtΣ + ΣTdBT

t

√
Xt ,

dYt = −1
2 X diag

t dt +
√

XtdB̃t ,

where

X diag
t is the vector containing the diagonal entries of Xt ,

(B̃t)t≥ is a Rd -valued Brownian motion correlated with
(Bt)t≥ with correlation ρ ∈ Rd .

F (u, v) = Tr(bu),

R(u, v) = 2uΣTΣu +
1

2
vT v + u(ΣTρvT + M) + (vρTΣ + MT )u

−1

2
diag(v),

where diag(v) is the d × d matrix with v on the main diagonal.



Thank you for your attention
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